Your browser doesn't support javascript.
loading
Influence of long-term ecological reclamation on carbon and nitrogen cycling in soil aggregates: The role of bacterial community structure and function.
Yuan, Ye; Cao, Chenyu; Feng, Yu; Miao, Yingfeng; Zhou, Zhengwei; Zhang, Shuaihang.
Afiliación
  • Yuan Y; Department of Land Resource Management, Shanxi University of Finance and Economics, Taiyuan 030006, China; Land Reclamation Center for Mining Area, Shanxi University of Finance and Economics, Taiyuan 030006, China. Electronic address: 20181033@sxufe.edu.cn.
  • Cao C; Department of Land Resource Management, Shanxi University of Finance and Economics, Taiyuan 030006, China; Land Reclamation Center for Mining Area, Shanxi University of Finance and Economics, Taiyuan 030006, China.
  • Feng Y; School of Land Science and Technology, China University of Geosciences, Beijing 100083, China.
  • Miao Y; Department of Land Resource Management, Shanxi University of Finance and Economics, Taiyuan 030006, China; Land Reclamation Center for Mining Area, Shanxi University of Finance and Economics, Taiyuan 030006, China.
  • Zhou Z; Department of Land Resource Management, Shanxi University of Finance and Economics, Taiyuan 030006, China; Land Reclamation Center for Mining Area, Shanxi University of Finance and Economics, Taiyuan 030006, China.
  • Zhang S; Department of Land Resource Management, Shanxi University of Finance and Economics, Taiyuan 030006, China; Land Reclamation Center for Mining Area, Shanxi University of Finance and Economics, Taiyuan 030006, China.
Sci Total Environ ; : 176729, 2024 Oct 03.
Article en En | MEDLINE | ID: mdl-39368513
ABSTRACT
Understanding the influence of microbial taxa and functions on soil carbon (C) and nitrogen (N) cycling, particularly concerning soil aggregate sizes, is crucial for ecosystem management. This study examines the taxonomic and functional dynamics of soil bacterial communities within different aggregate sizes over time. Soil samples from a reclamation forest on the Loess Plateau in North China were collected across reclamation ages of 0, 3, 18, and 28 years. Soil aggregates were categorized into large macro-aggregates (>2000 µm), small macro-aggregates (250-2000 µm), and micro-aggregates (<250 µm) using a modified dry-sieving method. Soil aggregate stability, C and N concentrations, newly derived plant C, enzyme activities, bacterial communities, and functional genes in each aggregate fraction were systematically analyzed. There was a notable increase in soil aggregate stability and a higher proportion of large aggregates was found with increasing forest age. There were significant differences in bacterial community structures, particularly between micro-aggregates and large macro-aggregates and across different forest ages. Reclamation led to an increased abundance of copiotrophic bacterial taxa. Decreases in N-acquiring enzyme activity in micro-aggregates were contrasted by an increase in C, N, and phosphorus (P) acquisition activities in larger aggregates over time. Larger aggregates showed a faster recovery of C and N cycling genes accompanied by a significant enhancement in acetyl-CoA and ammonia oxidation processes, underscoring their importance in soil nutrient cycling. These results highlight the critical role of aggregate size in shaping microbial community structures and functions that influence soil C and N cycling during reclamation and provide new perspectives highlighting the significance of incorporating aggregate size considerations into soil management and reclamation strategies.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article