Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Genet ; 55(2): 193-205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191264

RESUMO

Large genotyping datasets, obtained from high-density single nucleotide polymorphism (SNP) arrays, developed for different livestock species, can be used to describe and differentiate breeds or populations. To identify the most discriminating genetic markers among thousands of genotyped SNPs, a few statistical approaches have been proposed. In this study, we applied the Boruta algorithm, a wrapper of the machine learning random forest algorithm, on a database of 23 European pig breeds (20 autochthonous and three cosmopolitan breeds) genotyped with a 70k SNP chip, to pre-select informative SNPs. To identify different sets of SNPs, these pre-selected markers were then ranked with random forest based on their mean decrease accuracy and mean decrease gene indexes. We evaluated the efficiency of these subsets for breed classification and the usefulness of this approach to detect candidate genes affecting breed-specific phenotypes and relevant production traits that might differ among breeds. The lowest overall classification error (2.3%) was reached with a subpanel including only 398 SNPs (ranked based on their mean decrease accuracy), with no classification error in seven breeds using up to 49 SNPs. Several SNPs of these selected subpanels were in genomic regions in which previous studies had identified signatures of selection or genes associated with morphological or production traits that distinguish the analysed breeds. Therefore, even if these approaches have not been originally designed to identify signatures of selection, the obtained results showed that they could potentially be useful for this purpose.


Assuntos
Algoritmos , Genoma , Suínos/genética , Animais , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Aprendizado de Máquina
2.
Animal ; 18(2): 101070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38401921

RESUMO

Crossbreeding might be a valid strategy to valorize local pig breeds. Crossbreeding should reduce homozygosity and, as a consequence, yield hybrid vigor for fitness and production traits. This study aimed to quantify the persistence of autozygosity in terminal crossbred pigs compared with purebreds and, in turn, identify genomic regions where autozygosity's persistence would not be found. The study was based on genotyping data from 20 European local pig breeds and three cosmopolitan pig breeds used to simulate crossbred offspring. This study consisted of two steps. First, one hundred matings were simulated for each pairwise combination of the 23 considered breeds (for a total of 276 combinations), ignoring the sex of the parent individuals in order to generate purebred and crossbred matings leveraging all the germplasm available. Second, a few preselected terminal-maternal breed pairs were used to mimic a realistic terminal crossbreeding system: (i) Mora Romagnola (boars) or Cinta Senese (boars) crossed with Large White (sows) or Landrace (sows); (ii) Duroc (boars) crossed with Mora Romagnola (sows) or Cinta Senese (sows). Runs of homozygosity was used to estimate genome-wide autozygosity (FROH). Observed FROH was higher in purebreds than in crossbreds, although some crossbred combinations showed higher FROH than other purebred combinations. Among the purebreds, the highest FROH values were observed in Mora Romagnola and Turopolje (0.50 and 0.46, respectively). FROH ranged from 0.04 to 0.16 in the crossbreds Alentejana × Large White and Alentejana × Iberian, respectively. Persistence of autozygosity was found in several genomic segments harboring regions where quantitative trait loci (QTLs) were found in the literature. The regions were enriched in QTLs involved in fatty acid metabolism and associated with performance traits. This simulation shows that autozygosity persists in most breed combinations of terminal crosses. Results suggest that a strategy for crossbreeding is implemented when leveraging autochthonous and cosmopolitan breeds to obtain most of the hybrid vigor.


Assuntos
Hibridização Genética , Melhoramento Vegetal , Humanos , Animais , Suínos/genética , Masculino , Feminino , Fenótipo , Genômica/métodos , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
3.
Antioxidants (Basel) ; 13(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539912

RESUMO

Pig feeding prior to the extensive fattening phase might affect the final lipid profile and product quality. This study evaluates how maternal supplementation with vitamin E (VITE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg), or combined administration (VE + HXT) affects the piglet's plasma and tissues' fatty acid profiles and lipid stability according to the sow's parity number (PN), as well as the possible changes to the lipid profile after extensive feeding. The sows' PN affected the total fatty acid profile of plasma, muscle, and liver of piglets, with lower Δ-9 and Δ-6 desaturase indices but higher Δ-5 in those from primiparous (P) than multiparous (M) sows. Dietary VITE was more effective at decreasing C16:0 and saturated fatty acids in the muscle of piglets born from M than P sows, and modified the liver phospholipids in a different way. Sows' supplementation with HXT increased C18:2n-6 in triglycerides and polyunsaturated fatty acids (PUFA) in muscle phospholipids. In the liver, HXT supplementation also increased free-PUFA and free-n-3 fatty acids. However, lipid oxidation of piglets' tissues was not affected by the antioxidant supplementation, and it was higher in the livers of piglets born from M sows. The fatty acid profile in the muscle of pigs after extensive feeding was not affected by the PN, but it was by the sows' antioxidant supplementation, with positive effects on quality by both compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA