Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurol Neurosurg Psychiatry ; 95(4): 300-308, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37758453

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is a highly efficacious treatment for cervical dystonia, but its mechanism of action is not fully understood. Here, we investigate the brain metabolic effects of GPi-DBS in cervical dystonia. METHODS: Eleven patients with GPi-DBS underwent brain 18F-fluorodeoxyglucose positron emission tomography imaging during stimulation on and off. Changes in regional brain glucose metabolism were investigated at the active contact location and across the whole brain. Changes in motor symptom severity were quantified using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), executive function using trail making test (TMT) and parkinsonism using Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS: The mean (SD) best therapeutic response to DBS during the treatment was 81 (22)%. The TWSTRS score was 3.2 (3.9) points lower DBS on compared with off (p=0.02). At the stimulation site, stimulation was associated with increased metabolism, which correlated with DBS stimulation amplitude (r=0.70, p=0.03) but not with changes in motor symptom severity (p>0.9). In the whole brain analysis, stimulation increased metabolism in the GPi, subthalamic nucleus, putamen, primary sensorimotor cortex (PFDR<0.05). Acute improvement in TWSTRS correlated with metabolic activation in the sensorimotor cortex and overall treatment response in the supplementary motor area. Worsening of TMT-B score was associated with activation of the anterior cingulate cortex and parkinsonism with activation in the putamen. CONCLUSIONS: GPi-DBS increases metabolic activity at the stimulation site and sensorimotor network. The clinical benefit and adverse effects are mediated by modulation of specific networks.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Torcicolo , Humanos , Torcicolo/terapia , Ativação Metabólica , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiologia , Resultado do Tratamento , Doença de Parkinson/terapia
2.
Clin Neurophysiol ; 153: 79-87, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37459668

RESUMO

OBJECTIVE: Diagnosis of mild traumatic brain injury (mTBI) is challenging despite its high incidence, due to the unspecificity and variety of symptoms and the frequent lack of structural imaging findings. There is a need for reliable and simple-to-use diagnostic tools that would be feasible across sites and patient populations. METHODS: We evaluated linear machine learning (ML) methods' ability to separate mTBI patients from healthy controls, based on their sensor-level magnetoencephalographic (MEG) power spectra in the subacute phase (<2 months) after a head trauma. We recorded resting-state MEG data from 25 patients and 25 age-sex matched controls and utilized a previously collected data set of 20 patients and 20 controls from a different site. The data sets were analyzed separately with three ML methods. RESULTS: The median classification accuracies varied between 80 and 95%, without significant differences between the applied ML methods or data sets. The classification accuracies were significantly higher with ML than with traditional sensor-level MEG analysis based on detecting pathological low-frequency activity. CONCLUSIONS: Easily applicable linear ML methods provide reliable and replicable classification of mTBI patients using sensor-level MEG data. SIGNIFICANCE: Power spectral estimates combined with ML can classify mTBI patients with high accuracy and have high promise for clinical use.


Assuntos
Concussão Encefálica , Humanos , Concussão Encefálica/diagnóstico , Magnetoencefalografia/métodos , Aprendizagem , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA