Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Environ Res ; 257: 119328, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851369

RESUMO

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mudança Climática , Monitoramento Ambiental , Dióxido de Nitrogênio , Imagens de Satélites , Malásia , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Navios , COVID-19/epidemiologia , Emissões de Veículos/análise
2.
Environ Res ; 252(Pt 3): 118858, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609066

RESUMO

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echosounder (MBES), specifically R2-Sonic 2020 instrument, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.


Assuntos
Mudança Climática , Recifes de Corais , Movimentos da Água , Monitoramento Ambiental/métodos , Acústica , Efeito Doppler
3.
Parasitol Res ; 123(1): 105, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240877

RESUMO

Plasmodium cynomolgi is a simian malaria parasite that has been increasingly infecting humans. It is naturally present in the long-tailed and pig-tailed macaques in Southeast Asia. The P. cynomolgi Duffy binding protein 1 region II [PcDBP1(II)] plays an essential role in the invasion of the parasite into host erythrocytes. This study investigated the genetic polymorphism, natural selection and haplotype clustering of PcDBP1(II) from wild macaque isolates in Peninsular Malaysia. The genomic DNA of 50 P. cynomolgi isolates was extracted from the macaque blood samples. Their PcDBP1(II) gene was amplified using a semi-nested PCR, cloned into a plasmid vector and subsequently sequenced. The polymorphism, natural selection and haplotypes of PcDBP1(II) were analysed using MEGA X and DnaSP ver.6.12.03 programmes. The analyses revealed high genetic polymorphism of PcDBP1(II) (π = 0.026 ± 0.004; Hd = 0.996 ± 0.001), and it was under purifying (negative) selection. A total of 106 haplotypes of PcDBP1(II) were identified. Phylogenetic and haplotype analyses revealed two groups of PcDBP1(II). Amino acid length polymorphism was observed between the groups, which may lead to possible phenotypic difference between them.


Assuntos
Plasmodium cynomolgi , Plasmodium knowlesi , Humanos , Animais , Plasmodium cynomolgi/metabolismo , Malásia , Filogenia , Variação Genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Polimorfismo Genético , Macaca fascicularis/metabolismo , Análise por Conglomerados
4.
Chem Biodivers ; : e202400642, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822644

RESUMO

New 2-(4-benzothiazol-2-yl-phenoxy)-1-(3,5-diphenyl-4,5-dihydro-pyrazol-1-yl)-ethanones (9a-o) have been designed and synthesized. All the synthesized compounds were characterized by thin layer chromatography and spectral analysis. The antiepileptic potential of the synthesized compounds has been tested by following standard animal screening models, including maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) models. The neurotoxic and antidepression effects of the synthesized compounds were checked by utilizing rotarod apparatus, and motor impairment test (by actophotometer) respectively. The study concluded that compounds 9c, 9d, 9f, 9i, 9n, and 9o possessed good antiepileptic potential compared to standard drugs like carbamazepine and phenytoin. The results of the rotarod performance test also established them without any neurotoxicity. The motor impairment test revealed that the synthesized compounds are also good antidepressants. In-silico studies have been performed for calculation of pharmacophore pattern, prediction of pharmacokinetic properties which determine the eligibility of synthesized compounds as orally administered molecules and interactions with the target proteins. The result of in-silico studies reinforced results obtained by in vivo study of the synthesized compounds and their possible mechanism of antiepileptic action i. e. via inhibiting voltage-gated sodium channels (VGSCs) and gamma-aminobutyric acid-A receptor.

5.
Epidemiol Infect ; 151: e127, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293986

RESUMO

Evolutionary studies on Dengue virus (DENV) in endemic regions are necessary since naturally occurring mutations may lead to genotypic variations or shifts in serotypes, which may lead to future outbreaks. Our study comprehends the evolutionary dynamics of DENV, using phylogenetic, molecular clock, skyline plots, network, selection pressure, and entropy analyses based on partial CprM gene sequences. We have collected 250 samples, 161 in 2017 and 89 in 2018. Details for the 2017 samples were published in our previous article and that of 2018 are presented in this study. Further evolutionary analysis was carried out using 800 sequences, which incorporate the study and global sequences from GenBank: DENV-1 (n = 240), DENV-3 (n = 374), and DENV-4 (n = 186), identified during 1944-2020, 1956-2020, and 1956-2021, respectively. Genotypes V, III, and I were identified as the predominant genotypes of the DENV-1, DENV-3, and DENV-4 serotypes, respectively. The rate of nucleotide substitution was found highest in DENV-3 (7.90 × 10-4 s/s/y), followed by DENV-4 (6.23 × 10-4 s/s/y) and DENV-1 (5.99 × 10-4 s/s/y). The Bayesian skyline plots of the Indian strains revealed dissimilar patterns amongst the population size of the three serotypes. Network analyses showed the presence of different clusters within the prevalent genotypes. The data presented in this study will assist in supplementing the measures for vaccine development against DENV.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Sorogrupo , Dengue/epidemiologia , Filogenia , Teorema de Bayes , Genótipo
6.
Environ Res ; 239(Pt 2): 117314, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805186

RESUMO

Coastal ecosystems are facing heightened risks due to human-induced climate change, including rising water levels and intensified storm events. Accurate bathymetry data is crucial for assessing the impacts of these threats. Traditional data collection methods can be cost-prohibitive. This study investigates the feasibility of using freely accessible Landsat and Sentinel satellite imagery to estimate bathymetry and its correlation with hydrographic chart soundings in Port Klang, Malaysia. Through analysis of the blue and green spectral bands from the Landsat 8 and Sentinel 2 datasets, a bathymetry map of Port Klang's seabed is generated. The precision of this derived bathymetry is evaluated using statistical metrics like Root Mean Square Error (RMSE) and the coefficient of determination. The results reveal a strong statistical connection (R2 = 0.9411) and correlation (R2 = 0.7958) between bathymetry data derived from hydrographic chart soundings and satellite imagery. This research not only advances our understanding of employing Landsat imagery for bathymetry assessment but also underscores the significance of such assessments in the context of climate change's impact on coastal ecosystems. The primary goal of this research is to contribute to the comprehension of Landsat imagery's utility in bathymetry evaluation, with the potential to enhance safety protocols in seaport terminals and provide valuable insights for decision-making concerning the management of coastal ecosystems amidst climate-related challenges. The findings of this research have practical implications for a wide range of stakeholders involved in coastal management, environmental protection, climate adaptation and disaster preparedness.


Assuntos
Ecossistema , Imagens de Satélites , Humanos , Mudança Climática , Conservação dos Recursos Naturais , Água
7.
Environ Res ; 222: 115348, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731596

RESUMO

The International Maritime Organization has set a goal to achieve a 50% reduction of total annual greenhouse gas emission related to the international shipping by 2050 compared to the 2008 baseline emissions. Malaysia government has taken an initiative to investigate the assessment (cost-effectiveness) of this International Maritime Organization's short-term measure on Malaysian-registered domestic ships although this measure is only for international merchant ship. To achieve this, this paper collected the ship's data from the shipowners from 25 sample ships. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times. Based on cost-efficiency analysis, it creates for the purpose of compliance with the operational carbon intensity indicator. It found that even if it is possible to bring an asset back into service, it may not be possible to do so in a manner that generates a profit or complies with applicable regulations. In these situations, it may be more prudent to scrap the asset rather than run the risk of having it become a stranded asset. This is especially true for older tankers. Alternatives with lengthy payback periods are not desirable for the domestic tanker fleet that is already in operation.


Assuntos
Gases de Efeito Estufa , Navios , Conservação dos Recursos Naturais , Conservação de Recursos Energéticos
8.
J Neurosci Res ; 100(4): 915-932, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35194817

RESUMO

Working memory (WM) encompasses crucial cognitive processes or abilities to retain and manipulate temporary information for immediate execution of complex cognitive tasks in daily functioning such as reasoning and decision-making. The WM of individuals sustaining traumatic brain injury (TBI) was commonly compromised, especially in the domain of WM. The current study investigated the brain responses of WM in a group of participants with mild-moderate TBI compared to their healthy counterparts employing functional magnetic resonance imaging. All consented participants (healthy: n = 26 and TBI: n = 15) performed two variations of the n-back WM task with four load conditions (0-, 1-, 2-, and 3-back). The respective within-group effects showed a right hemisphere-dominance activation and slower reaction in performance for the TBI group. Random-effects analysis revealed activation difference between the two groups in the right occipital lobe in the guided n-back with cues, and in the bilateral occipital lobe, superior parietal region, and cingulate cortices in the n-back without cues. The left middle frontal gyrus was implicated in the load-dependent processing of WM in both groups. Further group analysis identified that the notable activation changes in the frontal gyri and anterior cingulate cortex are according to low and high loads. Though relatively smaller in scale, this study was eminent as it clarified the neural alterations in WM in the mild-moderate TBI group compared to healthy controls. It confirmed the robustness of the phenomenon in TBI with the reproducibility of the results in a heterogeneous non-Western sample.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Malásia , Memória de Curto Prazo/fisiologia , Reprodutibilidade dos Testes
9.
J Med Virol ; 94(2): 771-775, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708881

RESUMO

Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.


Assuntos
Quirópteros/virologia , Orthoreovirus/genética , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Zoonoses/transmissão , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Quirópteros/sangue , Feminino , Voluntários Saudáveis , Humanos , Malásia , Masculino , Pessoa de Meia-Idade , Infecções por Reoviridae/virologia , Estudos Soroepidemiológicos , Adulto Jovem , Zoonoses/sangue , Zoonoses/virologia
10.
Environ Res ; 214(Pt 1): 113757, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35753380

RESUMO

The study of metals mobility derived from mining activities in an ultramafic lithology is limited. This study investigates the effects of distance on potentially toxic metals such as Co, Cu, Fe, Mn, Ni, Pb, and Zn pollution, and the geochemical processes of fluvial system downstream of an ex-copper mine (Mamut River). The toxicity level of the river was evaluated using various sediment quality guidelines, ecotoxicological risks (ecological risk and risk index) and pollution indices. The geochemical behavior and stability of these toxic metals in the solid-phase samples were also examined. The results show that elevated concentrations of Ni, Cu, and Fe in the sediments can be linked to the adsorption and precipitation of metals from the aqueous-phase samples. We found that the metal scavenging rate as a function of distance is more evident in tropical environments than it was previously thought (10 km downstream). Such an inference could be explained by the greater amount of rainfall (pH 5.5-6.5) received in the tropics and higher weathering products that could react and form stable complexes. Geochemical analysis of the river sediment indicates that Ni, Cu, and Fe in the river sediment have increased 44-, 81-, and 90-fold compared to the background values, respectively. A significant decrease in the concentration of the potentially toxic metals was found at 5.5 km downstream. The scavenging rate of Fe is the highest (1485.82 µg g-1 km-1) followed by Cu (141.48 µg g-1 km-1), Ni (10.23 µg g-1 km-1), Pb (8.12 µg g-1 km-1) and Zn (5.01 µg g-1 km-1) in the tropical river system. In contrast, the concentration of Co and Mn in the river sediments doubled as the river flows approximately 5 km downstream due to the higher mineral solubility and weaker metal partition coefficient. This study also discusses the possibility of asbestos (mainly as chrysotile in the X-ray diffraction) as a potential hidden risk present within the ultramafic setting. This case study can be extrapolated to explain the dispersion of inorganic pollutants in an ultramafic environment in a global context.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Medição de Risco , Rios
11.
Mar Drugs ; 20(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005484

RESUMO

Mesoporous silica nanoparticles (MSNs) have great potential for applications as a drug delivery system (DDS) due to their unique properties such as large pore size, high surface area, biocompatibility, biodegradability, and stable aqueous dispersion. The MSN-mediated DDS can carry chemotherapeutic agents, optical sensors, photothermal agents, short interfering RNA (siRNA), and gene therapeutic agents. The MSN-assisted imaging techniques are applicable in cancer diagnosis. However, their synthesis via a chemical route requires toxic chemicals and is challenging, time-consuming, and energy-intensive, making the process expensive and non-viable. Fortunately, nature has provided a viable alternative material in the form of biosilica from marine resources. In this review, the applications of biosilica nanoparticles synthesized from marine diatoms in the field of drug delivery, biosensing, imaging agents, and regenerative medicine, are highlighted. Insights into the use of biosilica in the field of DDSs are elaborated, with a focus on different strategies to improve the physico-chemical properties with regards to drug loading and release efficiency, targeted delivery, and site-specific binding capacity by surface functionalization. The limitations, as well as the future scope to develop them as potential drug delivery vehicles and imaging agents, in the overall therapeutic management, are discussed.


Assuntos
Diatomáceas , Nanopartículas , Diatomáceas/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Nanopartículas/química , Preparações Farmacêuticas/metabolismo , Porosidade , Dióxido de Silício/química
12.
J Neuroeng Rehabil ; 19(1): 94, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002827

RESUMO

BACKGROUND: Hospital-based stroke rehabilitation for stroke survivors in developing countries may be limited by staffing ratios and length of stay that could hamper recovery potential. Thus, a home-based, gamified rehabilitation system (i.e., IntelliRehab) was tested for its ability to increase cerebral blood flow (CBF), and the secondary impact of changes on the upper limb motor function and functional outcomes. OBJECTIVE: To explore the effect of IntelliRehab on CBF in chronic stroke patients and its correlation with the upper limb motor function. METHODS: Two-dimensional pulsed Arterial Spin Labelling (2D-pASL) was used to obtain CBF images of stable, chronic stroke subjects (n = 8) over 3-months intervention period. CBF alterations were mapped, and the detected differences were marked as regions of interest. Motor functions represented by Fugl-Meyer Upper Extremity Assessment (FMA) and Stroke Impact Scale (SIS) were used to assess the primary and secondary outcomes, respectively. RESULTS: Regional CBF were significantly increased in right inferior temporal gyrus and left superior temporal white matter after 1-month (p = 0.044) and 3-months (p = 0.01) of rehabilitation, respectively. However, regional CBF in left middle fronto-orbital gyrus significantly declined after 1-month of rehabilitation (p = 0.012). Moreover, SIS-Q7 and FMA scores significantly increased after 1-month and 3-months of rehabilitation. There were no significant correlations, however, between CBF changes and upper limb motor function. CONCLUSIONS: Participants demonstrated improved motor functions, supporting the benefit of using IntelliRehab as a tool for home-based rehabilitation. However, within-participant improvements may have limited potential that suggests the need for a timely administration of IntelliRehab to get the maximum capacity of improvement.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Humanos , Perfusão , Projetos Piloto , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Sobreviventes , Resultado do Tratamento , Extremidade Superior
13.
J Environ Manage ; 301: 113872, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607142

RESUMO

Effluent originating from cheese production puts pressure onto environment due to its high organic load. Therefore, the main objective of this work was to compare the influence of different process variables (transmembrane pressure (TMP), Reynolds number and feed pH) on whey protein recovery from synthetic and industrial cheese whey using polyethersulfone (PES 30 kDa) membrane in dead-end and cross-flow modes. Analysis on the fouling mechanistic model indicates that cake layer formation is dominant as compared to other pore blocking phenomena evaluated. Among the input variables, pH of whey protein solution has the biggest influence towards membrane flux and protein rejection performances. At pH 4, electrostatic attraction experienced by whey protein molecules prompted a decline in flux. Cross-flow filtration system exhibited a whey rejection value of 0.97 with an average flux of 69.40 L/m2h and at an experimental condition of 250 kPa and 8 for TMP and pH, respectively. The dynamic behavior of whey effluent flux was modeled using machine learning (ML) tool convolutional neural networks (CNN) and recursive one-step prediction scheme was utilized. Linear and non-linear correlation indicated that CNN model (R2 - 0.99) correlated well with the dynamic flux experimental data. PES 30 kDa membrane displayed a total protein rejection coefficient of 0.96 with 55% of water recovery for the industrial cheese whey effluent. Overall, these filtration studies revealed that this dynamic whey flux data studies using the CNN modeling also has a wider scope as it can be applied in sensor tuning to monitor flux online by means of enhancing whey recovery efficiency.


Assuntos
Queijo , Soro do Leite , Queijo/análise , Filtração , Membranas Artificiais , Redes Neurais de Computação , Proteínas do Soro do Leite
14.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557839

RESUMO

Detection of sub-ppm acetic acid (CH3COOH) is in demand for environmental gas monitoring. In this article, we propose a CH3COOH gas sensor based on Sn3O4 and reduced graphene oxide (RGO), where the assembly of Sn3O4-RGO nanocomposites is dependent on the synthesis method. Three nanocomposites prepared by three different synthesis methods are investigated. The optimum assembly is by hydrothermal reactions of Sn4+ salts and pre-reduced RGO (designated as RS nanocomposite). Raman spectra verified the fingerprint of RGO in the synthesized RS nanocomposite. The Sn3O4 planes of (111), (210), (130), (13¯2) are observed from the X-ray diffractogram, and its average crystallite size is 3.94 nm. X-ray photoelectron spectroscopy on Sn3d and O1s spectra confirm the stoichiometry of Sn3O4 with Sn:O ratio = 0.76. Sn3O4-RGO-RS exhibits the highest response of 74% and 4% at 2 and 0.3 ppm, respectively. The sensitivity within sub-ppm CH3COOH is 64%/ppm. Its superior sensing performance is owing to the embedded and uniformly wrapped Sn3O4 nanoparticles on RGO sheets. This allows a massive relative change in electron concentration at the Sn3O4-RGO heterojunction during the on/off exposure of CH3COOH. Additionally, the operation is performed at room temperature, possesses good repeatability, and consumes only ~4 µW, and is a step closer to the development of a commercial CH3COOH sensor.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Grafite/química , Nanopartículas/química , Nanocompostos/química
15.
Transfus Apher Sci ; 60(3): 103076, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33574008

RESUMO

H-deficient phenotype individuals with absent or weak anti-H activity may remain undetected on standard routine blood grouping. We report a case of a 59-year-old-man presented with symptomatic anaemia secondary to upper gastrointestinal bleed with haemoglobin level of 68 g/L who required two units of packed red blood cells. He was previously grouped as O Rh D positive and had a history of uneventful multiple blood transfusions. His latest pre-transfusion investigations showed ABO discrepancy between forward and reverse blood grouping, pan-agglutination in both antibody screening and identification with negative direct Coombs test and autocontrol. Further testing including anti-H lectin test and saliva secretor study confirmed that the patient blood group was para-Bombay B RhD positive. This case highlights that the para-Bombay phenotype can be mistakenly labelled as "O" if further investigations are not performed.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Transfusão de Sangue/métodos , Humanos , Masculino , Pessoa de Meia-Idade
16.
Chem Eng J ; 420: 127655, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199974

RESUMO

Monitoring the COVID-19 virus through patients' saliva is a favorable non-invasive specimen for diagnosis and infection control. In this study, salivary samples of COVID-19 patients collected from 6 patients with the median age of 58.5 years, ranging from 34 to 72 years (2 females and 4 males) were analyzed using an Au/fiber Bragg grating (FBG) probe decorated with GO. The probe measures the prevalence of positivity in saliva and the association between the virus density and changes to sensing elements. When the probe is immersed in patients' saliva, deviation of the detected light wavelength and intensity from healthy saliva indicate the presence of the virus and confirms infection. For a patient in the hyperinflammatory phase of desease, who has virus density of 1.2 × 108 copies/mL in saliva, the maximum wavelength shift and intensity changes after 1600 s were shown to be 1.12 nm and 2.01 dB, respectively. While for a patient in the early infection phase with 1.6 × 103 copies/mL, these values were 0.98 nm and 1.32 dB. The precise and highly sensitive FBG probe proposed in this study was found a reliable tool for quick detection of the COVID-19 virus within 10 s after exposure to patients' saliva in any stage of the disease.

17.
Sensors (Basel) ; 21(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34300624

RESUMO

Adults are constantly exposed to stressful conditions at their workplace, and this can lead to decreased job performance followed by detrimental clinical health problems. Advancement of sensor technologies has allowed the electroencephalography (EEG) devices to be portable and used in real-time to monitor mental health. However, real-time monitoring is not often practical in workplace environments with complex operations such as kindergarten, firefighting and offshore facilities. Integrating the EEG with virtual reality (VR) that emulates workplace conditions can be a tool to assess and monitor mental health of adults within their working environment. This paper evaluates the mental states induced when performing a stressful task in a VR-based offshore environment. The theta, alpha and beta frequency bands are analysed to assess changes in mental states due to physical discomfort, stress and concentration. During the VR trials, mental states of discomfort and disorientation are observed with the drop of theta activity, whilst the stress induced from the conditional tasks is reflected in the changes of low-alpha and high-beta activities. The deflection of frontal alpha asymmetry from negative to positive direction reflects the learning effects from emotion-focus to problem-solving strategies adopted to accomplish the VR task. This study highlights the need for an integrated VR-EEG system in workplace settings as a tool to monitor and assess mental health of working adults.


Assuntos
Realidade Virtual , Eletroencefalografia , Interface Usuário-Computador , Local de Trabalho
18.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494254

RESUMO

Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual's character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorship were implemented, the methods proved tedious. Inevitably, misidentifications involving foul language owing to human weariness and the low performance in human visual systems concerning long screening time occurred. As such, this paper proposed an intelligent system for foul language censorship through a mechanized and strong detection method using advanced deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) through Long Short-Term Memory (LSTM) cells. Data on foul language were collected, annotated, augmented, and analysed for the development and evaluation of both CNN and RNN configurations. Hence, the results indicated the feasibility of the suggested systems by reporting a high volume of curse word identifications with only 2.53% to 5.92% of False Negative Rate (FNR). The proposed system outperformed state-of-the-art pre-trained neural networks on the novel foul language dataset and proved to reduce the computational cost with minimal trainable parameters.


Assuntos
Idioma , Redes Neurais de Computação , Humanos , Memória de Longo Prazo , Reconhecimento Psicológico
19.
Entropy (Basel) ; 23(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34945969

RESUMO

Porous media burner (PMB) is widely used in a variety of practical systems, including heat exchangers, gas propulsion, reactors, and radiant burner combustion. However, thorough evaluations of the performance of the PMB based on the usefulness of entropy generation, thermal and exergy efficiency aspects are still lacking. In this work, the concept of a double-layer micro PMB with a 23 mm cylindrical shape burner was experimentally demonstrated. The PMB was constructed based on the utilization of premixed butane-air combustion which consists of an alumina and porcelain foam. The tests were designed to cover lean to rich combustion with equivalence ratios ranging from ϕ = 0.6 to ϕ = 1.2. It was found that the maximum thermal and exergy efficiency was obtained at ϕ = 1.2 while the lowest thermal and exergy efficiency was found at ϕ = 0.8. Furthermore, the findings also indicated that the total entropy generation, energy loss, and exergy destroyed yield the lowest values at ϕ = 1.0 with 0.0048 W/K, 98.084 W, and 1.456 W, respectively. These values can be stated to be the suitable operating conditions of the PMB. The findings provided useful information on the design and operation in a double-layer PMB.

20.
J Phys Ther Sci ; 33(1): 75-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33519079

RESUMO

[Purpose] Understanding the essential mechanisms in post-stroke recovery not only provides important basic insights into brain function and plasticity but can also guide the development of new therapeutic approaches for stroke patients. This review aims to give an overview of how various variables of Magnetic Resonance-Diffusion Tensor Imaging (MR-DTI) metrics of fractional anisotropy (FA) can be used as a reliable quantitative measurement and indicator of corticospinal tract (CST) changes, particularly in relation to functional motor outcome correlation with a Fugl-Meyer assessment in stroke rehabilitation. [Methods] PubMed electronic database was searched for the relevant literature, using key words of diffusion tensor imaging (dti), corticospinal tract, and stroke. [Results] We reviewed the role of FA in monitoring CST remodeling and its role of predicting motor recovery after stroke. We also discussed the mechanism of CST remodeling and its modulation from the value of FA and FMA-UE. [Conclusion] Heterogeneity of post-stroke brain disorganization and motor impairment is a recognized challenge in the development of accurate indicators of CST integrity. DTI-based FA measurements offer a reliable and evidence-based indicator for CST integrity that would aid in predicting motor recovery within the context of stroke rehabilitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA