RESUMO
KEY MESSAGE: We transferred the Tri6 gene into the elite barley GemCraft via new transformation method through shoot organogenesis and identified the rearrangements of transgenes and phenotypic variations in the transgenic plants. Despite its agronomic and economic importance, barley transformation is still very challenging for many elite varieties. In this study, we used direct shoot organogenesis to transform the elite barley cultivar GemCraft with the RNAi constructs containing Tri6 gene of Fusarium graminearum, which causes fusarium head blight (FHB). We isolated 4432 shoot tips and co-cultured these explants with Agrobacterium tumefaciens. A total of 25 independent T0 transgenic plants were generated including 15 events for which transgene-specific PCR amplicons were observed. To further determine the presence of transgenes, the T1 progenies of all 15 T0 plants were analyzed, and the expected PCR products were obtained in 10 T1 lines. Droplet digital (dd) PCR analysis revealed various copy numbers of transgenes in the transgenic plants. We determined the insertion site of transgenes using long-read sequencing data and observed the rearrangements of transgenes. We found phenotypic variations in both T1 and T2 generation plants. FHB disease was evaluated under growth chamber conditions, but no significant differences in disease severity or deoxynivalenol accumulation were observed between two Tri6 transgenic lines and the wildtype. Our results demonstrate the feasibility of the shoot tip transformation and may open the door for applying this system for genetic improvement and gene function research in other barley genotypes.
Assuntos
Fusarium , Hordeum , Hordeum/genética , Plantas Geneticamente Modificadas/microbiologia , Agrobacterium tumefaciens/genética , Sementes/genéticaRESUMO
RB is a potato gene that provides resistance to a broad spectrum of genotypes of the late blight pathogen Phytophthora infestans. RB belongs to the CC-NB-LRR (coiled-coil, nucleotide-binding, leucine-rich repeat) class of resistance (R) genes, a major component of the plant immune system. The RB protein detects the presence of class I and II IPI-O effectors from P. infestans to initiate a hypersensitive resistance response, but this activity is suppressed in the presence of the Class III effector IPI-O4. Using natural genetic variation of RB within potato wild relatives, we identified two amino acids in the CC domain that alter interactions needed for suppression of resistance by IPI-O4. We have found that separate modification of these amino acids in RB can diminish or expand the resistance capability of this protein against P. infestans in both Nicotiana benthamiana and potato. Our results demonstrate that increased knowledge of the molecular mechanisms that determine resistance activation and R protein suppression by effectors can be utilized to tailor-engineer genes with the potential to provide increased durability.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Phytophthora infestans , Solanum tuberosum , Variação Genética , Phytophthora infestans/genética , Doenças das Plantas , Plantas Geneticamente Modificadas , Solanum tuberosum/genéticaRESUMO
Oat crown rust caused by Puccinia coronata f. sp. avenae P. Syd. & Syd (Pca) is a major constraint to oat (Avena sativa L.) production in many parts of the globe. The objectives of this study were to locate Pc96 on the oat consensus map and to develop SNP markers linked to Pc96 for use in marker-assisted selection. SNP loci linked to the crown rust resistance gene Pc96 were identified by linkage analysis and PACE assays were developed for marker-assisted selection in breeding programs. Pc96 is a race-specific crown rust resistance gene originating from cultivated oat that has been deployed in North American oat breeding programs. Pc96 was mapped in a recombinant inbred line population (n = 122) developed from a cross between the oat crown rust differential known to carry Pc96 and the differential line carrying Pc54. A single resistance locus was identified on chromosome 7D between 48.3 and 91.2 cM. The resistance locus and linked SNPs were validated in two additional biparental populations, Ajay × Pc96 (F2:3, n = 139) and Pc96 × Kasztan (F2:3, n = 168). Based on all populations, the most probable location of the oat crown rust resistance gene Pc96 on the oat consensus map was on chromosome 7D approximately at 87.3 cM. In the Ajay × Pc96 population, a second unlinked resistance gene was contributed by the Pc96 differential line, which mapped to chromosome 6C at 75.5 cM. A haplotype of nine linked SNPs predicted the absence of Pc96 in a diverse group of 144 oat germplasm. SNPs that are closely linked to the Pc96 gene may be beneficial as PCR-based molecular markers in marker-assisted selection.
Assuntos
Avena , Basidiomycota , Avena/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Biomarcadores , PucciniaRESUMO
Rye (Secale cereale L.) is known for its wide adaptation due to its ability to tolerate harsh environments in semiarid areas. To assess the diversity in rye we genotyped a panel of 178 geographically diverse accessions of four Secale sp. from U.S. National Small Grains Collection using 4,037 high-quality SNPs (single nucleotide polymorphisms) developed by genotyping-by-sequencing (GBS). PCA and STRUCTURE analysis revealed three major clusters that separate S. cereale L. from S. strictum and S. sylvestre, however, genetic clusters did not correlate with geographic origins and growth habit (spring/winter). The panel was evaluated for response to Pyrenophora tritici-repentis race 5 (PTR race 5) and nearly 59% accessions showed resistance or moderate resistance. Genome-wide association study (GWAS) was performed on S. cereale subsp. cereale using the 4,037 high-quality SNPs. Two QTLs (QTs.sdsu-5R and QTs.sdsu-2R) on chromosomes 5R and 2R were identified conferring resistance to PTR race 5 (p < 0.001) that explained 13.1% and 11.6% of the phenotypic variation, respectively. Comparative analysis showed a high degree of synteny between rye and wheat with known rearrangements as expected. QTs.sdsu-2R was mapped in the genomic region corresponding to wheat chromosome group 2 and QTs.sdsu-5R was mapped to a small terminal region on chromosome 4BL. Based on the genetic diversity, a set of 32 accessions was identified to represents more than 99% of the allelic diversity with polymorphic information content (PIC) of 0.25. This set can be utilized for genetic characterization of useful traits and genetic improvement of rye, triticale, and wheat.
Assuntos
Resistência à Doença/genética , Genômica , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Secale/genética , Secale/microbiologia , Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genótipo , Locos de Características Quantitativas/genética , Secale/crescimento & desenvolvimento , Secale/imunologiaRESUMO
Genomics studies in potato and other plants have elucidated a large number of genes involved in a wide array of phenotypes. In particular, recent bioinformatic and genomic analyses of oomycetes and fungi have identified many effectors for which the corresponding host resistance-eliciting receptor remains to be found. Functional testing of host resistance gene candidates can be accomplished by generating whole plant transformants to either overexpress or silence these genes to obtain a visible phenotype. However, this is time consuming. Alternatively, Agrobacterium tumefaciens can be used to transiently express genes in plant tissue to observe phenotypic changes. Wild relatives of potato contain a large amount of genotypic diversity and are an excellent tool to identify important agronomic traits, including resistance to diseases. The methods presented here help to facilitate the screening of wild potato accessions using agroinfiltration.
Assuntos
Expressão Gênica , Genótipo , Solanum tuberosum/genética , Transgenes , FenótipoRESUMO
Rye (Secale cereale L.) serves as an alternative host of Pyrenophora tritici-repentis (PTR) the cause of tan spot on wheat. Rye is cultivated as a forage or cover crop and overlaps with a significant portion of wheat acreage in the U.S. northern Great Plains; however, it is not known whether the rye crop influences the evolution of PTR races. We evaluated a global collection of 211 rye accessions against tan spot and assessed the diversity in PTR population on rye in South Dakota. All the rye genotypes were inoculated with PTR races 1 and 5, and infiltrated with Ptr ToxA and Ptr ToxB, at seedling stage. We observed 21% of the genotypes exhibited susceptibility to race 1, whereas, 39% were susceptible to race 5. All 211 accessions were insensitive to both the Ptr toxins. It indicates that though rye exhibits diversity in reaction to tan spot, it lacks Ptr ToxA and ToxB sensitivity genes. This suggests that unknown toxins or other factors can lead to PTR establishment in rye. We characterized the race structure of 103 PTR isolates recovered from rye in South Dakota. Only 22% of the isolates amplified Ptr ToxA gene and were identified as race 1 based on their phenotypic reaction on the differential set. The remaining 80 isolates were noted to be race 4. Our results show that races 1 and 4 are prevalent on rye in South Dakota with a higher frequency of race 4, suggesting a minimal role of rye in the disease epidemiology.
RESUMO
Tan spot (TS), caused by the fungus Pyrenophora tritici-repentis (Died) Drechs, is an important foliar disease of wheat and has become a threat to world wheat production since the 1970s. In this study a globally diverse pre-1940s collection of 247 wheat genotypes was evaluated against Ptr ToxA, P. tritici-repentis race 1, and stem rust to determine if; (i) acquisition of Ptr ToxA by the P. tritici-repentis from Stagonospora nodorum led to increased pathogen virulence or (ii) incorporation of TS susceptibility during development stem rust resistant cultivars led to an increase in TS epidemics globally. Most genotypes were susceptible to stem rust; however, a range of reactions to TS and Ptr ToxA were observed. Four combinations of disease-toxin reactions were observed among the genotypes; TS susceptible-Ptr ToxA sensitive, TS susceptible-Ptr ToxA insensitive, TS resistant-Ptr ToxA insensitive, and TS resistant-Ptr ToxA toxin sensitive. A weak correlation (r = 0.14 for bread wheat and -0.082 for durum) was observed between stem rust susceptibility and TS resistance. Even though there were no reported epidemics in the pre-1940s, TS sensitive genotypes were widely grown in that period, suggesting that Ptr ToxA may not be an important factor responsible for enhanced prevalence of TS.
RESUMO
Tan spot, caused by the fungus Pyrenophora triticirepentis, is economically important foliar disease in Latvia, Lithuania, and Romania; however, race structure from Baltic States and Romania is not known. In this study, we performed genotypic and phenotypic race characterization of a large collection of P. triticirepentis isolates from these countries to determine race structure and utilize this information for better disease management and breeding wheat for tan spot resistance. We characterized 231 single spore isolates from Latvia (n = 15), Lithuania (n = 107), and Romania (n = 109) for Ptr ToxA and Ptr ToxB genes using two genes specific primers. A subset (139) of 231 isolates were further characterized for their race structure by inoculating them individually on tan spot wheat differentials set. Majority (83%) of the 231 isolates amplified Ptr ToxA gene suggesting prevalence of race 1 and 2. Further, phenotypic characterization of 139 isolates also showed wide prevalence of races 1 (68%), 2 (8%), 3 (11%), and 4 (5%) were also identified from Baltic States as well as Romania. Eighteen of the isolates (13%) did not seem to be of any of the eight known races as they lacked Ptr ToxA gene but they behaved like either race 1 or race 2, suggesting possibility of novel toxins in these isolates as their virulence tools.