Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Am Chem Soc ; 146(35): 24310-24319, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39165005

RESUMO

Metal-metal bonding is crucial in chemistry for advancing our understanding of the fundamental aspects of chemical bonds. Metal-metal bonds based on alkaline-earth (Ae) elements, especially the heavier Ae elements (Ca, Sr, and Ba), are rarely reported due to their high electropositivity. Herein, we report two heteronuclear di-EMFs CaY@Cs(6)-C82 and CaY@C2v(5)-C80, which contain unprecedented single-electron Ca-Y metal-metal bonds. These compounds were characterized by single-crystal X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The crystallographic study of CaY@Cs(6)-C82 shows that Ca and Y are successfully encapsulated into the carbon cage with a Ca-Y distance of 3.691 Å. The CW-EPR study of both CaY@Cs(6)-C82 and CaY@C2v(5)-C80 exhibits a doublet, suggesting the presence of an unpaired electron located between Ca and Y. The combined experimental and theoretical results confirm the presence of a Ca-Y single-electron metal-metal bond with substantial covalent interaction, attributed to significant overlap between the 4s4p orbitals of Ca and the 5s5p4d orbitals of Y. Furthermore, pulse EPR spectroscopy was used to investigate the quantum coherence of the electron spin within this bond. The unpaired electron, characterized by its s orbital nature, is effectively protected by the carbon cage, resulting in efficient suppression of both spin-lattice relaxation and decoherence. CaY@Cs(6)-C82 behaves as an electron spin qubit, displaying a maximum decoherence time of 7.74 µs at 40 K. This study reveals an unprecedented Ae-rare-earth metal-metal bond stabilized by the fullerene cages and elucidates the molecular qubit properties stemming from their unique bonding character, highlighting their potential in quantum information processing applications.

2.
Clin Chem Lab Med ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39191205

RESUMO

OBJECTIVES: The measurement of blood pH and gas analytes (BPGA), soon after birth, constitutes the first-line standard of care procedure in high-risk newborns. However, no data is available in capillary blood on perinatal bias such as gestational age (GA), weight at birth (BW), delivery mode, and gender. The aims of the present study were to investigate whether in a cohort of healthy preterm (PT) and term (T) infants BPGA were GA, BW, delivery mode and gender dependent, thus affecting BPGA reliability as diagnostic test. METHODS: We performed a prospective case-control study in 560 healthy infants (PT: n=115, T: n=445). BPGA was measured within 24-h from birth. Perinatal characteristics, outcomes, and clinical examination were also recorded. RESULTS: PT infants showed higher (p<0.001) carbon dioxide partial pressure (pCO2), fraction of fetal hemoglobin (HbF), base excess (BE), bicarbonate (HCO3), and lower lactate (Lac) levels. When corrected for delivery mode, higher (p<0.001) HbF, BE, HCO3, and lower Lac levels were found. Similarly, higher (p<0.05, for all) pCO2, HbF, BE, HCO3 and lower Lac levels were found between female and male PT and T infants. Repeated multiple logistic regression analysis showed that BPGA was GA, BW, delivery mode and gender dependent. CONCLUSIONS: The present results showing that BPGA can be affected by a series of perinatal outcomes open the way to further investigations providing longitudinal BPGA reference curves in the transitional phase, thus empowering BPGA role as a reliable diagnostic and therapeutic strategies efficacy marker.

3.
Acta Paediatr ; 113(4): 700-708, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38156367

RESUMO

AIM: To investigate the effects of caffeine loading/maintenance administration on near-infrared spectroscopy cerebral, kidney and splanchnic patterns in preterm infants. METHODS: We conducted a multicentre case-control prospective study in 40 preterm infants (gestational age 29 ± 2 weeks) where each case acted as its own control. A caffeine loading dose of 20 mg/kg and a maintenance dose of 5 mg/kg after 24 h were administered intravenously. Near infrared spectroscopy monitoring parameters were monitored 30 min before, 30 min during and 180 min after caffeine therapy administration. RESULTS: A significant increase (p < 0.05) in splanchnic regional oxygenation and tissue function and a decrease (p < 0.05) in cerebral tissue function after loading dose was shown. A preferential hemodynamic redistribution from cerebral to splanchnic bloodstream was also observed. After caffeine maintenance dose regional oxygenation did not change in the monitored districts, while tissue function increased in kidney and splanchnic bloodstream. CONCLUSION: Different caffeine administration modalities affect cerebral/systemic oxygenation status, tissue function and hemodynamic pattern in preterm infants. Future studies correlating near infrared spectroscopy parameters and caffeine therapy are needed to determine the short/long-term effect of caffeine in preterm infants.


Assuntos
Cafeína , Recém-Nascido Prematuro , Recém-Nascido , Humanos , Lactente , Cafeína/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho , Estudos Prospectivos , Idade Gestacional , Oxigênio
4.
Beilstein J Org Chem ; 20: 92-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38264452

RESUMO

Fullerene dimerization inside a peapod is analyzed at DFT level by characterizing the stationary points and deriving the energy profile of the initial and reversible process named phase 1. We find that the barriers for the radical cation mechanism are significantly lower than those found for the neutral pathway. The peapod is mainly providing one-dimensional confinement for the reaction to take place in a more efficient way. Car-Parrinello metadynamics simulations provide hints on structures for the initial steps of the irreversible phase 2 where bond formation and breaking lead to important structural reorganizations within the coalescence process.

5.
Chemistry ; 29(21): e202203477, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36645138

RESUMO

The photophysical and chiroptical properties of a novel, chiral helicene-NHC-Re(I) complex bearing an N-(aza[6]helicenyl)-benzimidazolylidene ligand are described, showing its ability to emit yellow circularly polarized luminescence. A comparative analysis of this new system with other helicene-Re(I) complexes reported to date illustrates the impact of structural modifications on the emissive and absorptive properties.

6.
J Org Chem ; 88(7): 4234-4243, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36989519

RESUMO

Herein, we performed the reactions of M3N@Ih-C80 (M = Sc and Lu) with the methanol (CH3OH) solution of TBAOH (note that both CH3O- and OH- are nucleophiles) in benzonitrile (PhCN) and dimethylformamide, respectively. It is found that OH- ions rather than CH3O- ions selectively attacked the fullerene cage to form the M3N@C80--O- intermediate. Although the fullerene cage is initially attacked by OH- in both PhCN and DMF solvents, the products are quite different. In PhCN, two isomeric Sc3N@Ih-C80 fullerooxazoline heterocyclic products (1 and 2) were synthesized. Whereas, in DMF, an epoxide of Lu3N@Ih-C80 (3) was obtained. The preference for fullerooxazoline formation over that of fullerene epoxy in PhCN is well explained by density functional theory calculations. Plausible reaction mechanisms for the formation of metallofullerene oxazoline and epoxide were proposed based on the experimental and theoretical results.

7.
Inorg Chem ; 62(32): 12976-12988, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37527419

RESUMO

Actinide endohedral metallofullerenes (EMFs) are a fullerene family that possess unique actinide-carbon cage host-guest molecular and electronic structures. In this work, a novel actinide EMF, U@Cs(4)-C82, was successfully synthesized and characterized, and its chemical reactivity was investigated. Crystallographic analysis shows that U@Cs(4)-C82, a new isomer of U@C82, has a Cs(4)-C82 cage, which has never been discovered in the form of empty or endohedral fullerenes. Its unique chemical reactivities were further revealed through the Bingel-Hirsch reaction and carbene addition reaction studies. The Bingel-Hirsch reaction of U@Cs(4)-C82 shows exceptionally high selectivity and product yield, yielding only one major addition adduct. Moreover, the addition sites for both reactions are unexpectedly located on adjacent carbon atoms far away from the actinide metal, despite the nucleophilic (Bingel-Hirsch) and electrophilic (carbene addition) nature of either reactant. Density functional theory (DFT) calculations suggest that this chemical behavior, unprecedented for EMFs, is directed by the unusually strong interaction between U and the sumanene motif of the carbon cage in U@Cs(4)-C82, which makes the energy increase when it is disrupted. This work reveals remarkable chemical properties of actinide EMFs originating from their unique electronic structures and highlights the key role of actinide-cage interactions in the determination of their chemical behaviors.

8.
Clin Chem Lab Med ; 61(12): 2205-2211, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366015

RESUMO

OBJECTIVES: Intrauterine growth restriction (IUGR) represents one of the main causes of perinatal mortality and morbidity. Nowadays, IUGR early diagnosis is mandatory in order to limit the occurrence of multiorgan failure, especially the brain. Therefore, we investigated whether longitudinal S100B assessment in maternal blood could be a trustable predictor of IUGR. METHODS: We conducted a prospective study in 480 pregnancies (IUGR: n=40; small for gestational age, SGA: n=40; controls: n=400) in whom S100B was measured at three predetermined monitoring time-points (T1: 8-18 GA; T2: 19-23 GA; T3: 24-28 GA). RESULTS: Lower S100B in IUGR fetuses than SGA and controls (p<0.05, for all) at T1-T3. Receiver operating characteristic curve showed that S100B at T1 was the best predictor of IUGR (sensitivity: 100 %; specificity: 81.4 %) than T2, T3. CONCLUSIONS: The early lower S100B concentration in pregnant women lately complicated by IUGR support the notion that non-invasive early IUGR diagnosis and monitoring is becoming feasible. Results open the way to further studies aimed at diagnosing and monitoring fetal/maternal diseases at earliest time.


Assuntos
Retardo do Crescimento Fetal , Recém-Nascido Pequeno para a Idade Gestacional , Recém-Nascido , Gravidez , Humanos , Feminino , Retardo do Crescimento Fetal/diagnóstico , Estudos Prospectivos , Feto , Encéfalo , Subunidade beta da Proteína Ligante de Cálcio S100
9.
Angew Chem Int Ed Engl ; 62(3): e202211704, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36349405

RESUMO

Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.


Assuntos
Fulerenos , Ligantes , Meios de Contraste
10.
J Am Chem Soc ; 144(16): 7253-7263, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35413200

RESUMO

We report a new molecular design to afford persistent chiral organic open-shell systems with configurational stability and an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest doubly occupied molecular orbital (HOMO) for both mono- and diradical states. The unpaired electron delocalization within the designed extended helical π-conjugated systems is a crucial factor to reach chemical stabilities, which is not obtained using the classical steric protection approach. The unique features of the obtained helical monoradicals allow an exploration of the chiral intramolecular electron transfer (IET) process in solvents of different polarity by means of optical and chiroptical spectroscopies, resulting in an unprecedented electronic circular dichroism (ECD) sign inversion for the radical transitions. We also characterized the corresponding helical diradicals, which show near-infrared electronic circular dichroism at wavelengths up to 1100 nm and an antiferromagnetic coupling between the spins, with an estimated singlet-triplet gap (ΔEST) of about -1.2 kcal mol-1. The study also revealed an intriguing double SOMO-HOMO inversion (SHI) electronic configuration for these diradicals, providing new insight regarding the peculiar energetic ordering of radical orbitals and the impact on the corresponding (chiral) optoelectronic properties.

11.
Chemistry ; 28(17): e202200166, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143078

RESUMO

The first chiral helicene-NHC gold(I) complexes efficient in enantioselective catalysis were prepared. The L-shaped chiral ligand is composed of an imidazo[1,5-a]pyridin-3-ylidene (IPy) scaffold laterally substituted by a configurationally stable [5]-helicenoid unit. The chiral information was introduced in a key post-functionalization step of a NHC-gold(I) complex bearing a symmetrical anionic fluoreno[5]helicene substituent, leading to a racemic mixture of complexes featuring three correlated elements of chirality, namely central, axial and helical chirality. After HPLC enantiomeric resolution, X-ray crystallography and theoretical calculations enabled structural and stereochemical characterization of these configurationally stable NHC-gold(I) complexes. The high potential in asymmetric catalysis is demonstrated in the benchmark cycloisomerization of N-tethered 1,6-enynes with up to 95 : 5 er.

12.
J Phys Chem A ; 126(34): 5821-5831, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994775

RESUMO

Dipole polarizabilities and C6 and C9 dispersion coefficients are computed for closed- and open-shell atoms and molecules, using dynamic (time-dependent) density functional (TD-DFT) linear response theory as implemented in the response module of the NWChem quantum chemistry package. The response module is capable of accurate calculations of these properties, based on spin-restricted and spin-unrestricted formalisms. The calculated static polarizabilities and dispersion coefficients are compared to available experimental and other theoretical data. The behavior of the dynamic polarizability at imaginary frequencies is analyzed for differently sized closed- and open-shell systems. An interpolation method enforcing the monotonic decrease of the polarizability with increasing imaginary frequency is beneficial for the integration used to obtain C6 and C9. Scaling of the TD-DFT data by ratios of the static polarizability, which can be calculated with a variety of methods, including highly accurate theories, may be used as a leading-order correction.

13.
J Am Chem Soc ; 143(39): 16226-16234, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34553913

RESUMO

Understanding the chemical behavior of actinide elements is essential for the effective management and use of actinide materials. In this study, we report an unprecedented η2 (side-on) coordination of U by a cyanide in a UCN cluster, which was stabilized inside a C82 fullerene cage. UCN@Cs(6)-C82 was successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray crystallography, cyclic voltammetry, spectroscopy, and theoretical calculations. The bonding analysis demonstrates significant donation bonding between CN- and uranium, and covalent interactions between uranium and the carbon cage. These effects correlate with an observed elongated cyanide C-N bond, resulting in a rare case where the oxidation state of uranium shows ambiguity between U(III) and U(I). The discovery of this unprecedented triangular configuration of the uranium cyanide cluster provides a new insight in coordination chemistry and highlights the large variety of bonding situations that uranium can have.

14.
Chemistry ; 27(66): 16505-16511, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34599776

RESUMO

Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10-3 , one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10-4 ). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.

15.
Chemistry ; 27(28): 7722-7730, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33780559

RESUMO

The straightforward, multigram-scale synthesis of the partially saturated H6 -fluoreno[n]helicenes (n=5 or 7) featuring a central, overcrowded alkene is described. The key cyclization step was based on an intramolecular McMurry reaction from the corresponding 1,5-diketones. Chiral stationary phase HPLC analysis and isomer separation indicate that each helicenic compound is constituted of three diastereoisomers at room temperature, i. e. the configurationally stable (R,R,P)/(S,S,M) pair of enantiomers and an apparently achiral compound resulting from the rapid interconversion between the (R,S,P) and (S,R,M) enantiomers. The partially saturated H6 -fluoreno[n]helicenes are oxidatively aromatized to give an efficient access to the corresponding fluoreno[n]helicenes. The chiroptical properties (vibrational and electronic circular dichroism) of the chiral, enantiopure compounds have been measured and analyzed by quantum-chemical calculations, confirming their helicoidal nature.

16.
Phys Chem Chem Phys ; 23(1): 339-346, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33349818

RESUMO

The sodium anion (Na-) was once thought to behave like a 'genuine' anion, with both the [Ne] core and the 3s valence shell interacting very weakly with their environments. In the present work, following a recent study of the surprisingly small quadrupolar line widths of Na-, NMR shielding calculations were carried out for the Na-/Na+ [2.2.2]cryptand system solvated in methylamine, based on ab initio molecular dynamics simulations, followed by detailed analyses of the shielding constants. The results confirm that Na- does not act like a quasi-free ion that interacts only weakly with its surroundings. Rather, the filled 3s shell of Na- interacts strongly with its chemical environment, but only weakly with the ion's own core and the nucleus, and it isolates the core from the chemical environment. As a consequence, the Na- ion appears in NMR experiments like a free ion.

17.
J Am Chem Soc ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33201694

RESUMO

We report persistent chiral organic mono- and diradical cations based on bicarbazole molecular design with an unprecedented stability dependence on the type of chirality, namely, axial versus helical. An unusual chemical stability was observed for sterically unprotected axial bicarbazole radical in comparison with monocarbazole and helical bicarbazole ones. Such results were experimentally and theoretically investigated, revealing an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbital (HOMO) in both axial and helical bicarbazole monoradicals along with a subtle difference of electronic coupling between the two carbazole units, which is modulated by their relative dihedral angle and related to the type of chirality. Such findings allowed us to explore in depth the SOMO-HOMO inversion (SHI) in chiral radical molecular systems and provide new insights regarding its impact on the stability of organic radicals. Finally, these specific electronic properties allowed us to prepare a persistent, intrinsically chiral, diradical which notably displayed near-infrared electronic circular dichroism responses up to 1100 nm and almost degenerate singlet-triplet ground states with weak antiferromagnetic interactions evaluated by magnetometry experiments.

18.
Chirality ; 32(6): 741-752, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32166815

RESUMO

Vibrational Raman optical activity (ROA) spectra were calculated under off-resonance, near-resonance, and at-resonance conditions for [Co(en)3]3+ (A) and under off-resonance conditions for [Rh(en)3]3+ (B) using a new driver software for calculating the ROA intensities from complex (damped) time-dependent linear response Kohn-Sham theory. The off-resonance spectra of A and B show many similarities. At an incident laser wavelength of 532 nm, used in commercial ROA spectrometers, the spectrum of A is enhanced by near-resonance with the ligand-field transitions of the complex. The near-resonance spectrum exhibits many qualitative differences compared with the off-resonance case, but it remains bi-signate. Even under full resonance with the ligand-field electronic transitions, the ROA spectrum of A remains bi-signate when the electronic transitions are broadened such as to yield absorption line widths that are comparable with those in the experimental UV-vis absorption and electronic circular dichroism spectra.

19.
Angew Chem Int Ed Engl ; 59(22): 8394-8400, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32167646

RESUMO

The first enantiopure chiral-at-rhenium complexes of the form fac-ReX(CO)3 (:C^N) have been prepared, where :C^N is a helicene-N-heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re-NHC systems.

20.
J Am Chem Soc ; 141(51): 20249-20260, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31793304

RESUMO

Novel actinide cluster fullerenes, U2C2@Ih(7)-C80 and U2C2@D3h(5)-C78, were synthesized and fully characterized by mass spectrometry, single-crystal X-ray crystallography, UV-vis-NIR, nuclear magnetic resonance spectroscopy (NMR), X-ray absorption spectroscopy (XAS), Raman spectroscopy, IR spectroscopy, as well as density functional and multireference wave function calculations. The encapsulated U2C2 is the first example of a uranium carbide cluster featuring two U centers bridged by a C≡C unit. The U-C bond distances in these U2C2 clusters are in the range between 2.130 and 2.421 Å. While the U2C2 cluster in U2C2@C80 adopts a butterfly-shaped geometry with a U-C2-U dihedral angle of 112.7° and a U-U distance of 3.855 Å, the U-U distance in U2C2@C78 is 4.164 Å and the resulting U-C2-U dihedral angle is increased to 149.1°. The combined experimental and quantum-chemical results suggest that the formal U oxidation state is +4 in the U2C2 cluster, and each U center transfers three electrons to the C2n cage and one electron to C2. Different from the strong U═C covalent bonding reported for U2C@C80, the U-C bonds in U2C2 are less covalent and predominantly ionic. The C-C triple bond is somewhat weaker than in HCCH, and the C-C π bonds undergo donation bonding with the U centers. This work demonstrates that the combination of the unique encapsulation effect of fullerene cages and the variable oxidation states of actinide elements can lead to the stabilization of novel actinide clusters, which are not accessible by conventional synthetic methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA