Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Sci Technol ; 51(22): 13327-13334, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29072907

RESUMO

2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14C-DNAN into the humin fraction. 14C-DNAN incorporation to the humin fraction was strongly correlated (R2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.


Assuntos
Anisóis , Solo , Radioisótopos de Carbono , Poluentes do Solo
2.
Environ Sci Technol ; 50(19): 10518-10526, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27597320

RESUMO

Nitrite (NO2-) substrate under certain conditions can cause failure of N-removal processes relying on anaerobic ammonium oxidizing (anammox) bacteria. Detoxification of NO2- can potentially be achieved by using exogenous nitrate (NO3-). In this work, continuous experiments in bioreactors with anammox bacteria closely related to "Candidatus Brocadia caroliniensis" were conducted to evaluate the effectiveness of short NO3- additions to reverse NO2- toxicity. The results show that a timely NO3- addition immediately after a NO2- stress event completely reversed the NO2- inhibition. This reversal occurs without NO3- being metabolized as evidence by lack of any 30N2 formation from 15N-NO3-. The maximum recovery rate was observed with 5 mM NO3- added for 3 days; however, slower but significant recovery was also observed with 5 mM NO3- for 1 day or 2 mM NO3- for 3 days. Without NO3- addition, long-term NO2- inhibition of anammox biomass resulted in irreversible damage of the cells. These results suggest that a short duration dose of NO3- to an anammox bioreactor can rapidly restore the activity of NO2--stressed anammox cells. On the basis of the results, a hypothesis about the detoxification mechanism related to narK genes in anammox bacteria is proposed and discussed.


Assuntos
Bactérias Anaeróbias/metabolismo , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Compostos de Amônio Quaternário/metabolismo
3.
Plant Physiol ; 166(4): 2051-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25318937

RESUMO

The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.


Assuntos
Butadienos/metabolismo , Carbono/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Terpenos/metabolismo , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Meio Ambiente , Temperatura Alta , Luz , Fotossíntese , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Temperatura , Árvores/efeitos da radiação
4.
Environ Sci Technol ; 49(9): 5681-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25839647

RESUMO

Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.


Assuntos
Bactérias/metabolismo , Substâncias Explosivas/metabolismo , Microbiota , Nitrocompostos/metabolismo , Microbiologia do Solo , Triazóis/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental , Biotransformação , Nitrogênio/metabolismo
5.
Plant Cell Environ ; 37(2): 414-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23862653

RESUMO

Acetylation of plant metabolites fundamentally changes their volatility, solubility and activity as semiochemicals. Here we present a new technique termed dynamic (13) C-pulse chasing to track the fate of C1-3 carbon atoms of pyruvate into the biosynthesis and emission of methyl acetate (MA) and CO2 . (13) C-labelling of MA and CO2 branch emissions respond within minutes to changes in (13) C-positionally labelled pyruvate solutions fed through the transpiration stream. Strong (13) C-labelling of MA emissions occurred only under pyruvate-2-(13) C and pyruvate-2,3-(13) C feeding, but not pyruvate-1-(13) C feeding. In contrast, strong (13) CO2 emissions were only observed under pyruvate-1-(13) C feeding. These results demonstrate that MA (and other volatile and non-volatile metabolites) derive from the C2,3 atoms of pyruvate while the C1 atom undergoes decarboxylation. The latter is a non-mitochondrial source of CO2 in the light generally not considered in studies of CO2 sources and sinks. Within a tropical rainforest mesocosm, we also observed atmospheric concentrations of MA up to 0.6 ppbv that tracked light and temperature conditions. Moreover, signals partially attributed to MA were observed in ambient air within and above a tropical rainforest in the Amazon. Our study highlights the potential importance of acetyl coenzyme A (CoA) biosynthesis as a source of acetate esters and CO2 to the atmosphere.


Assuntos
Acetatos/metabolismo , Cistaceae/metabolismo , Dióxido de Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Redes e Vias Metabólicas , Fotossíntese , Clima Tropical , Compostos Orgânicos Voláteis/metabolismo
6.
J Water Health ; 12(2): 269-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24937221

RESUMO

Enteric pathogens in pool water can be unintentionally ingested during swimming, increasing the likelihood of acute gastrointestinal illness (AGI). AGI cases in outbreaks are more likely to submerge heads than non-cases, but an association is unknown since outbreak data are self-reported and prone to bias. In the present study, head submersion frequency and duration were observed and analyzed for associations with pool water ingestion measured using ultra high pressure liquid chromatography - tandem mass spectrometry. Frequency of splashes to the face was also quantified. Reliable tools that assess activities associated with pool water ingestion are needed to identify ingestion risk factors and at-risk populations. Objectives were to determine if the observed activities were associated with ingestion, and to test environmental sensor and videography assessment tools. Greater frequency and duration of head submersion were not associated with ingestion, but frequency of splashes to the face, leisurely swimming, and being ≤18 were. Videography was validated for assessing swimmer head submersion frequency. Results demonstrate ingestion risk factors can be identified using videography and urine analysis techniques. Expanding surveys to include questions on leisure swimming participation and frequency of splashes to the face is recommended to improve exposure assessment during outbreak investigations.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Tecnologia de Sensoriamento Remoto/métodos , Natação , Espectrometria de Massas em Tandem/métodos , Triazinas/urina , Gravação de Videoteipe/métodos , Poluentes Químicos da Água/urina , Adolescente , Adulto , Arizona , Criança , Feminino , Humanos , Masculino , Fatores de Risco , Inquéritos e Questionários , Piscinas
7.
J Labelled Comp Radiopharm ; 57(6): 434-6, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24596018

RESUMO

Syntheses of [(13)C6]-2,4-dinitroanisole (ring-(13)C6) from [(13)C6]-anisole (ring-(13)C6) and [(15)N2]-2,4-dinitroanisole from anisole using in situ generated acetyl nitrate and [(15)N]-acetyl nitrate, respectively, are described. Treatment of [(13)C6]-anisole (ring-(13)C6) with acetyl nitrate generated in 100% HNO3 gave [(13)C6]-2,4-dinitroanisole (ring-(13)C6) in 83% yield. Treatment of anisole with [(15)N]-acetyl nitrate generated in 10 N [(15)N]-HNO3 gave [(15)N2 ]-2,4-dinitroanisole in 44% yield after two cycles of nitration. Byproducts in the latter reaction included [(15)N]-2-nitroanisole and [(15)N]-4-nitroanisole.


Assuntos
Anisóis/química , Anisóis/síntese química , Radioquímica , Isótopos de Carbono/química , Técnicas de Química Sintética , Nitratos/química , Isótopos de Nitrogênio/química
8.
J Exp Bot ; 64(12): 3697-708, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23881400

RESUMO

Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.


Assuntos
Annona/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Mangifera/metabolismo , Pentanos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Dióxido de Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Oxirredução , Fotossíntese , Caules de Planta/metabolismo , Estresse Fisiológico
9.
Biotechnol Bioeng ; 110(6): 1595-604, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23280483

RESUMO

As the use of the insensitive munition compound 2,4-dinitroanisole (DNAN) increases, releases to the environment may pose a threat to local ecosystems. Little is known about the environmental fate of DNAN and the conversions caused by microbial activity. We studied DNAN biotransformation rates in sludge under aerobic, microaerophilic, and anaerobic conditions, detected biotransformation products, and elucidated their chemical structures. The biotransformation of DNAN was most rapid under anaerobic conditions with H2 as a cosubstrate. The results showed that the ortho nitro group in DNAN is regioselectively reduced to yield 2-methoxy-5-nitroaniline (MENA), and then the para nitro group is reduced to give 2,4-diaminoanisole (DAAN). Both MENA and DAAN were identified as important metabolites in all redox conditions. Azo and hydrazine dimer derivatives formed from the coupling of DNAN reduction products in anaerobic conditions. Secondary pathways included acetylation and methylation of amine moieties, as well as the stepwise O-demethylation and dehydroxylation of methoxy groups. Seven unique metabolites were identified which enabled elucidation of biotransformation pathways. The results taken as a whole suggest that reductive biotransformation is an important fate of DNAN leading to the formation of aromatic amines as well as azo and hydrazine dimeric metabolites.


Assuntos
Anisóis/química , Anisóis/metabolismo , Biodegradação Ambiental , Esgotos/química , Aerobiose , Anaerobiose , Biotransformação , Cromatografia Líquida de Alta Pressão , Substâncias Explosivas/química , Substâncias Explosivas/metabolismo , Espectrometria de Massas , Modelos Moleculares
10.
Sci Total Environ ; 876: 162662, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898538

RESUMO

Due to global water scarcity and population growth, multiple solutions are needed to conserve and collect water, especially in arid and semi-arid regions of the planet. As the practice of harvesting rainwater grows, it is important to assess the quality of roof-harvested rainwater (RHRW). This study measured twelve organic micropollutants (OMPs) in RHRW samples collected between 2017 and 2020 by community scientists, with approximately two hundred RHRW samples and corresponding field blank analyzed annually. The OMPs analyzed were atrazine, pentachlorophenol (PCP), chlorpyrifos, 2,4-dichlorophenoxyacetic acid (2,4-D), prometon, simazine, carbaryl, nonylphenol (NP), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorobutane sulfonic acid (PFBS), and perfluorononanoic acid (PFNA). OMP concentrations measured in RHRW were below the following existing standards: US EPA Primary Drinking Water Standard, Arizona Department of Environmental Quality (ADEQ) Partial Body Contact for Surface Waters, and ADEQ Full Body Contact for Surface Waters for analytes in this study. At the time the study was conducted, 28 % of RHRW samples exceeded the non-enforceable US EPA Lifetime Health Advisory (HA) of 70 ng L-1 for the combined sum of PFOS and PFOA with a mean exceedance concentration of 189 ng L-1. When comparing PFOA and PFOS to the June 15, 2022 interim updated HAs of 0.004 ng L-1 and 0.02 ng L-1, respectively, all samples exceeded these values. No RHRW samples exceeded the final proposed HA of 2000 ng L-1 for PFBS. The limited number of state and federal standards established for the contaminants highlighted in this study indicate potential regulatory gaps and that users need to be aware that OMPs may be present in RHRW. Based on these concentrations, domestic activities and intended uses should be carefully considered.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Arizona , Justiça Ambiental , Fluorocarbonos/análise , Água Potável/análise
11.
Environ Sci Technol ; 46(16): 9055-61, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22827160

RESUMO

The United States Environmental Protection Agency has identified quantification of trichloroethylene (TCE), an industrial solvent, in breast milk as a high priority need for risk assessment. Water and milk samples were collected from 20 households by a lactation consultant in Nogales, Arizona. Separate water samples (including tap, bottled, and vending machine) were collected for all household uses: drinking, bathing, cooking, and laundry. A risk factor questionnaire was administered. Liquid-liquid extraction with diethyl ether was followed by GC-MS for TCE quantification in water. Breast milk underwent homogenization, lipid hydrolysis, and centrifugation prior to extraction. The limit of detection was 1.5 ng/mL. TCE was detected in 7 of 20 mothers' breast milk samples. The maximum concentration was 6 ng/mL. TCE concentration in breast milk was significantly correlated with the concentration in water used for bathing (ρ = 0.59, p = 0.008). Detection of TCE in breast milk was more likely if the infant had a body mass index <14 (RR = 5.2, p = 0.02). Based on average breast milk consumption, TCE intake for 5% of the infants may exceed the proposed U.S. EPA Reference Dose. Results of this exploratory study warrant more in depth studies to understand risk of TCE exposures from breast milk intake.


Assuntos
Leite Humano/química , Tricloroetileno/análise , Abastecimento de Água/análise , Adulto , Arizona , Feminino , Humanos , Limite de Detecção
12.
J Chromatogr A ; 1664: 462817, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35032899

RESUMO

Ultra-hydrophilic per- and polyfluorinated sulfonates (PFSA) are increasingly scrutinized in recent years due to their ubiquitous occurrence, persistence, and aqueous mobility in the environment, yet analysis remains a challenge. This study developed methods for the analysis of trifluoromethanesulfonate, perfluorobutanesulfonate, 10-camphorsulfonate, and a di-fluorinated sulfonate utilizing mixed-mode liquid chromatography, where all analytes were adequately retained and separated. Chromatography and electrospray ionization parameters were optimized; instrumental limits of quantification for the anionic target analytes were in the range of 4.3 - 16.1 ng L-1. Solid phase extraction (SPE) methods were developed using Oasis WAX cartridges; SPE recoveries for the analytes ranged from 86% to 125%. Salinity and total organic carbon both impaired the SPE performance to different extents, depending on the respective analyte. Utilizing widely accessible instrumentation and materials, this is a single method to simultaneously analyze conceivably the most hydrophilic PFAS chemical, i.e., trifluoromethanesulfonate, and moderately hydrophobic PFSAs.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Mesilatos , Extração em Fase Sólida
13.
Environ Sci Pollut Res Int ; 29(17): 25988-25994, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218486

RESUMO

Aryl-iodonium salts are utilized as photoacid generators (PAGs) in semiconductor photolithography and other photo-initiated manufacturing processes. Despite their utilization and suspected toxicity, the fate of these compounds within the perimeter of semiconductor fabrication plants is inadequately understood; the identification of photolithography products is still needed for a comprehensive environmental impact assessment. This study investigated the photolytic transformation of a representative iodonium PAG cation, bis-(4-tert-butyl phenyl)-iodonium, under conditions simulating industrial photolithography. Under 254-nm irradiation, bis-(4-tert-butyl phenyl)-iodonium reacted rapidly with a photolytic half-life of 39.2 s; different counter ions or solvents did not impact the degradation kinetics. At a semiconductor photolithography-relevant UV dosage of 25 mJ cm-2, 33% of bis-(4-tert-butyl phenyl)-iodonium was estimated to be transformed. Six aromatic/hydrophobic photoproducts were identified utilizing a combination of HPLC-DAD and GC-MS. Selected photoproducts such as tert-butyl benzene and tert-butyl iodobenzene had remarkably higher acute microbial toxicity toward bacterium Aliivibrio fischeri compared to bis-(4-tert-butyl phenyl)-iodonium. Octanol-water partition coefficients estimated using the Estimation Programs Interface Suite™ indicated that the photoproducts were substantially more hydrophobic than the parent compound. The results fill a critical data gap hindering the environmental impact assessment of iodonium PAGs and provide clues on potential management strategies for both iodonium compounds and their photoproducts.


Assuntos
Aliivibrio fischeri , Cátions , Interações Hidrofóbicas e Hidrofílicas , Octanóis , Fotólise
15.
Proc Natl Acad Sci U S A ; 105(9): 3404-9, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18305169

RESUMO

Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species.


Assuntos
Comportamento Alimentar , Flores/fisiologia , Aprendizagem , Mariposas/fisiologia , Polinização , Olfato/fisiologia , Animais , Arizona , Comportamento Animal , Odorantes , Condutos Olfatórios
16.
Chemosphere ; 281: 130824, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34044301

RESUMO

Perfluorooctanoic acid (PFOA, C8HF15O2) is an industrial surfactant that is highly resistant to natural breakdown processes such as those mediated by heat, hydrolysis, photolysis, and biodegradation. Many efforts have been developed to breakdown PFOA to less harmful species due to its widespread human exposure and potential toxicity. However, these methods require high temperature or specialized equipment with serious disadvantages of high energy cost for long-term use. We investigated the effectiveness of PFOA degradation by ferrous iron-activated persulfate oxidation (IAPO) under various aqueous geochemical conditions. Approximately 64% of PFOA (initial concentration = 1.64 µmol L-1) was degraded after 4 h under illuminated anoxic conditions at ambient temperature. This degradation rate and magnitude support the potential use of IAPO as a novel inexpensive and environmentally friendly method to remediate PFOA in soil and groundwater.


Assuntos
Fluorocarbonos , Ferro , Caprilatos , Humanos , Temperatura
17.
Chemosphere ; 280: 130672, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964749

RESUMO

New munition compounds have been developed to replace traditional explosives to prevent unintended detonations. However, insensitive munitions (IM) can leave large proportion of unexploded charge in the field, where it is subjected to photodegradation and dissolution in precipitation. The photolytic reactions occurring on the surfaces of IMX-101 and IMX-104 formulations and the subsequent fate of photolytic products in the environment were thoroughly investigated. The constituents of IMX-101 and IMX-104 formulations dissolve sequentially under rainfall in the order of aqueous solubility: 3-nitro-1,2,4-triazol-5-one (NTO) > nitroguanidine (NQ) > 2,4-dinitroanisole (DNAN) > 1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A linear relationship between DNAN dissolution and rainwater volume was observed (r2: 0.86-0.99). It was estimated that it would take 16-228 years to completely dissolve these formulation particles under natural environmental conditions in Oracle, AZ. We used LC/MS/MS and GC/MS to examine the dissolution samples from IMX-101 and 104 particles exposed to rainfall and sunlight and found six DNAN photo-transformation products including 2-methoxy-5-nitrophenol, 4-methoxy-3-nitrophenol, 4-methoxy-3-nitroaniline, 2-methoxy-5-nitroaniline, 2,4-dinitrophenol, and methoxy-dinitrophenol, which are in good agreement with computational modeling results of bond strengths. The main DNAN photodegradation pathways are therefore proposed. Predicted eco-toxicity values suggested that the parent compound DNAN, methoxy-nitrophenols, methoxy-nitroanilines and the other two products (2,4-dinitrophenol and methoxy-dinitrophenol) would be harmful to fish and daphnid. Our study provides improved insight about the rain dissolution and photochemical behavior of IM formulations under natural conditions, which helps to form target-oriented strategies to mitigate explosive contamination in military training sites.


Assuntos
Substâncias Explosivas , Espectrometria de Massas em Tandem , Animais , Anisóis , Nitrocompostos , Fotólise , Solubilidade , Triazinas , Triazóis
18.
Environ Sci Pollut Res Int ; 28(7): 8915-8921, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33400114

RESUMO

Despite the widespread utilization of onium salts as photoacid generators (PAGs) in semiconductor photolithography, their environmental, health, and safety (EHS) properties remain poorly understood. The present work reports the bioconcentration potential of five representative onium species (four sulfonium and one iodonium compound) by determining the octanol-water partition coefficient (POW) and lipid membrane affinity coefficient (KMA); microbial toxicity was evaluated using the bioluminescent bacterium Aliivibrio fischeri (Microtox bioassay). Four of the oniums exhibited varying degrees of hydrophobic (lipophilic) partitioning (log POW: 0.08-4.12; KMA: 1.70-5.62). A strong positive linear correlation was observed between log POW and KMA (KMA = log POW + 1.76, R2 = 0.99). The bioconcentration factors (log BCF) estimated from POW and KMA for the four oniums ranged from 0.13 to 3.67 L kg-1. Bis-(4-tert-butyl phenyl)-iodonium and triphenylsulfonium had 50% inhibitory concentrations (IC50) of 4.8 and 84.6 µM, whereas the IC50 values of the other three oniums were not determined because these values were higher than their aqueous solubility. Given the increased regulatory scrutiny regarding the use and potential health impacts from onium PAGs, this study fulfills critical knowledge gaps concerning the EHS properties of PAG oniums, enabling more comprehensive evaluation of their environmental impacts and potential risk management strategies.


Assuntos
Aliivibrio fischeri , Bioacumulação , Cátions , Interações Hidrofóbicas e Hidrofílicas , Octanóis
19.
J Hazard Mater ; 413: 125459, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930971

RESUMO

2,4-Dinitroanisole (DNAN) is an insensitive munitions compound expected to replace 2,4,6-trinitrotoluene (TNT). The product of DNAN's reduction in the environment is 2,4-diaminoanisole (DAAN), a toxic and carcinogenic aromatic amine. DAAN is known to become irreversibly incorporated into soil natural organic matter (NOM) after DNAN's reduction. Herein, we investigate the reactions between DAAN and NOM under anoxic conditions, using 1,4-benzoquinone (BQ) and methoxybenzoquinone (MBQ) as model humic moieties of NOM. A new method stopped the fast reactions between DAAN and quinones, capturing the fleeting intermediates. We observed that DAAN incorporation into NOM (represented by BQ and MBQ models) is quinone-dependent and occurs via Michael addition, imine (Schiff-base) formation, and azo bond formation. After dimers are formed, incorporation reactions continue, resulting in trimers and tetramers. After 20 days, 56.4% of dissolved organic carbon from a mixture of DAAN (1 mM) and MBQ (3 mM) had precipitated, indicating an extensive polymerization, with DAAN becoming incorporated into high-molecular-weight humic-like compounds. The present work suggests a new approach for DNAN environmental remediation, in which DNAN anaerobic transformation can be coupled to the formation of non-extractable bound DAAN residues in soil organic matter. This process does not require aerobic conditions nor a specific catalyst.

20.
Environ Pollut ; 268(Pt B): 115862, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120159

RESUMO

2,4-Dinitroanisole (DNAN) is a component of insensitive munitions (IM), which are replacing traditional explosives due to their improved safety. Incomplete IM combustion releases DNAN onto the soil, where it can leach into the subsurface with rainwater, encounter anoxic conditions, and undergo (a)biotic reduction to aromatic amines 2-methoxy-5-nitroaniline (MENA), 4-methoxy-3-nitroaniline (iMENA, isomer of MENA), and 2,4-diaminoanisole (DAAN). We report here studies of nucleophilic addition mechanisms that may account for the sequestration of aromatic amine daughter products of DNAN into soil organic matter (humus), effectively removing these toxic compounds from the aqueous environment. Because quinones are important moieties in humus, we incubated MENA, iMENA, DAAN, and related analogs with model compounds 1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone under anoxic conditions. Mass spectrometry and ultra-high performance liquid chromatography revealed that the aromatic amines had covalently bonded to either carbonyl carbons or ring carbons ß to carbonyl carbons of the quinones, producing a mixture of imines and Michael adducts, respectively. These products formed rapidly and accumulated in the one-to four-day incubations. Nucleophilic addition reactions, which do not require catalysis or oxic conditions, are proposed as a mechanism resulting in the binding of DNAN to soil observed in previous studies. To remediate sites contaminated with DNAN or other nitroaromatics, reducing conditions and humus amendments may promote their immobilization into the soil matrix.


Assuntos
Substâncias Explosivas , Solo , Aminas , Anisóis , Núcleo Familiar , Quinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA