Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 297: 113407, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346394

RESUMO

The depletion of fossil fuels has been a greater concern to the world due to the demand for energy that tremendously increasing with urbanization and population growth. For sustainable development, power industries are trying to find suitable substitute of petroleum fuel which is environment friendly and economically feasible. The biomass such as the production of bio-oil from chicken litter could be a possible alternative source of energy. The conversion of the feedstock was conducted through a catalytic pyrolysis process in an ex-situ fixed bed reactor heated at 500 °C with a heating rate of 50 °C/min. Proximate, ultimate, and calorific analysis of the feedstock was studied using TGA/DTG analysis, CHNS, and bomb calorimeter, respectively. GCMS and py-GCMS experiments on the bio-oil showed that the HHV of the feedstock was 16.01 MJ/kg. The addition of catalyst improved the quality of the bio-oil yield. The presence of dolomite and ZMS-5 catalyst enhances the phenols and aromatic content, respectively. Biomass to catalyst (B/C) ratio increased the oil production from 43.6g to 51.9g for dolomite and 43.6g-47.1g for ZMS-5 with the B/C ration of 20g:3g. Elevating the B/C ratio increases the pyrolytic liquid yield with greater influence on the furanic compound.


Assuntos
Galinhas , Pirólise , Animais , Biocombustíveis , Biomassa , Catálise , Temperatura Alta , Óleos de Plantas , Polifenóis
2.
Sci Rep ; 13(1): 3765, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882520

RESUMO

Carbon capture and catalytic conversion to methane is promising for carbon-neutral energy production. Precious metals catalysts are highly efficient; yet they have several significant drawbacks including high cost, scarcity, environmental impact from the mining and intense processing requirements. Previous experimental studies and the current analytical work show that refractory grade chromitites (chromium rich rocks with Al2O3 > 20% and Cr2O3 + Al2O3 > 60%) with certain noble metal concentrations (i.e., Ir: 17-45 ppb, Ru: 73-178 ppb) catalyse Sabatier reactions and produce abiotic methane; a process which has not been investigated at the industrial scale. Thus, a natural source (chromitites) hosting noble metals might be used instead of concentrating noble metals for catalysis. Stochastic machine-learning algorithms show that among the various phases, the noble metal alloys are natural methanation catalysts. Such alloys form when pre-existing platinum group minerals (PGM) are chemically destructed. Chemical destruction of existing PGM results to mass loss forming locally a nano-porous surface. The chromium-rich spinel phases, hosting the PGM inclusions, are subsequently a second-tier support. The current work is the first multi-disciplinary research showing that noble metal alloys within chromium-rich rocks are double-supported, Sabatier catalysts. Thus, such sources could be a promising material in the search of low-cost, sustainable materials for green energy production.

3.
Polymers (Basel) ; 11(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557811

RESUMO

In recent years, there has been considerable interest in the use of natural fibers as potential reinforcing fillers in polymer composites despite their hydrophilicity, which limits their widespread commercial application. The present study explored the fabrication of nanocomposites by melt mixing, using an internal mixer followed by a compression molding technique, and incorporating rice husk (RH) as a renewable natural filler, montmorillonite (MMT) nanoclay as water-resistant reinforcing nanoparticles, and polypropylene-grafted maleic anhydride (PP-g-MAH) as a compatibilizing agent. To correlate the effect of MMT delamination and MMT/RH dispersion in the composites, the mechanical and thermal properties of the composites were studied. XRD analysis revealed delamination of MMT platelets due to an increase in their interlayer spacing, and SEM micrographs indicated improved dispersion of the filler(s) from the use of compatibilizers. The mechanical properties were improved by the incorporation of MMT into the PP/RH system and the reinforcing effect was remarkable as a result of the use of compatibilizing agent. Prolonged water exposure of the prepared samples decreased their tensile and flexural properties. Interestingly, the maximum decrease was observed for PP/RH composites and the minimum was for MMT-reinforced and PP-g-MAH-compatibilized PP/RH composites. DSC results revealed an increase in crystallinity with the addition of filler(s), while the melting and crystallization temperatures remained unaltered. TGA revealed that MMT addition and its delamination in the composite systems improved the thermal stability of the developed nanocomposites. Overall, we conclude that MMT nanoclay is an effective water-resistant reinforcing nanoparticle that enhances the durability, mechanical properties, and thermal stability of composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA