Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(42): 20959-20968, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570623

RESUMO

Genome editing using the CRISPR/Cas9 system has been used to make precise heritable changes in the DNA of organisms. Although the widely used Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants have been efficiently harnessed for numerous gene-editing applications across different platforms, concerns remain regarding their putative off-targeting at multiple loci across the genome. Here we report that Francisella novicida Cas9 (FnCas9) shows a very high specificity of binding to its intended targets and negligible binding to off-target loci. The specificity is determined by its minimal binding affinity with DNA when mismatches to the target single-guide RNA (sgRNA) are present in the sgRNA:DNA heteroduplex. FnCas9 produces staggered cleavage, higher homology-directed repair rates, and very low nonspecific genome editing compared to SpCas9. We demonstrate FnCas9-mediated correction of the sickle cell mutation in patient-derived induced pluripotent stem cells and propose that it can be used for precise therapeutic genome editing for a wide variety of genetic disorders.


Assuntos
Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , DNA/genética , Francisella/enzimologia , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/genética , Catálise , DNA/química , DNA/metabolismo , Francisella/genética , Genoma , Humanos , Cinética , Especificidade por Substrato
2.
Nat Commun ; 15(1): 5471, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942756

RESUMO

The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Francisella , Edição de Genes , Humanos , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Francisella/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amaurose Congênita de Leber/genética , Streptococcus pyogenes/genética , Células HEK293 , Mutação , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Engenharia de Proteínas/métodos , Genoma Humano
3.
Ophthalmic Genet ; 42(4): 365-374, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33821751

RESUMO

BACKGROUND: Precision genome engineering, with targeted therapy towards patient-specific mutations is predicted to be the future of personalized medicine. Ophthalmology is in the frontiers of development of targeted therapy since the eye is an accessible organ and has the ease of both delivery as well as monitoring effects of therapy. MATERIALS AND METHODS: We reviewed literature using keywords CRISPR, precision medicine, genomic editing, retinal dystrophies, retinitis pigmentosa, Usher syndrome, Stargardt's Disease. Further, we collated data on current clinical trials. RESULTS: There is growing evidence on the role of genomic editing in retinal dystrophies, the various methods used, and stage of development of different therapies have been summarized in this paper. CONCLUSIONS: The CRISPR-Cas9 system has revolutionized genome editing, and opened avenues in drug discovery. It is important to understand the role of this system along with its applicability in the field of ophthalmology. In this review article, we briefly describe its methodology, the strategies of employing it for making genetic perturbations, and explore its applications in inherited retinal dystrophies.


Assuntos
Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Genoma Humano/genética , Distrofias Retinianas/genética , Terapia Genética , Medicina Genômica , Humanos
4.
Elife ; 102021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106048

RESUMO

The COVID-19 pandemic originating in the Wuhan province of China in late 2019 has impacted global health, causing increased mortality among elderly patients and individuals with comorbid conditions. During the passage of the virus through affected populations, it has undergone mutations, some of which have recently been linked with increased viral load and prognostic complexities. Several of these variants are point mutations that are difficult to diagnose using the gold standard quantitative real-time PCR (qRT-PCR) method and necessitates widespread sequencing which is expensive, has long turn-around times, and requires high viral load for calling mutations accurately. Here, we repurpose the high specificity of Francisella novicida Cas9 (FnCas9) to identify mismatches in the target for developing a lateral flow assay that can be successfully adapted for the simultaneous detection of SARS-CoV-2 infection as well as for detecting point mutations in the sequence of the virus obtained from patient samples. We report the detection of the S gene mutation N501Y (present across multiple variant lineages of SARS-CoV-2) within an hour using lateral flow paper strip chemistry. The results were corroborated using deep sequencing on multiple wild-type (n = 37) and mutant (n = 22) virus infected patient samples with a sensitivity of 87% and specificity of 97%. The design principle can be rapidly adapted for other mutations (as shown also for E484K and T716I) highlighting the advantages of quick optimization and roll-out of CRISPR diagnostics (CRISPRDx) for disease surveillance even beyond COVID-19. This study was funded by Council for Scientific and Industrial Research, India.


SARS-CoV-2, the virus responsible for COVID-19, has a genome made of RNA (a nucleic acid similar to DNA) that can mutate, potentially making the disease more transmissible, and more lethal. Most countries have monitored the rise of mutated strains using a technique called next generation sequencing (NGS), which is time-consuming, expensive and requires skilled personnel. Sometimes the mutations to the virus are so small that they can only be detected using NGS. Finding cheaper, simpler and faster SARS-CoV-2 tests that can reliably detect mutated forms of the virus is crucial for public health authorities to monitor and manage the spread of the virus. Lateral flow tests (the same technology used in many pregnancy tests) are typically cheap, fast and simple to use. Typically, lateral flow assay strips have a band of immobilised antibodies that bind to a specific protein (or antigen). If a sample contains antigen molecules, these will bind to the immobilised antibodies, causing a chemical reaction that changes the colour of the strip and giving a positive result. However, lateral flow tests that use antibodies cannot easily detect nucleic acids, such as DNA or RNA, let alone mutations in them. To overcome this limitation, lateral flow assays can be used to detect a protein called Cas9, which, in turn, is able to bind to nucleic acids with specific sequences. Small changes in the target sequence change how well Cas9 binds to it, meaning that, in theory, this approach could be used to detect small mutations in the SARS-CoV-2 virus. Kumar et al. made a lateral flow test that could detect a Cas9 protein that binds to a nucleic acid sequence found in a specific mutant strain of SARS-CoV-2. This Cas9 was highly sensitive to changes in its target sequence, so a small mutation in the target nucleic acid led to the protein binding less strongly, and the signal from the lateral flow test being lost. This meant that the lateral flow test designed by Kumar et al. could detect mutations in the SARS-CoV-2 virus at a fraction of the price of NGS approaches if used only for diagnosis. The lateral flow test was capable of detecting mutant viruses in patient samples too, generating a colour signal within an hour of a positive sample being run through the assay. The test developed by Kumar et al. could offer public health authorities a quick and cheap method to monitor the spread of mutant SARS-CoV-2 strains; as well as a way to determine vaccine efficacy against new strains.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/genética , Sistemas CRISPR-Cas/genética , SARS-CoV-2/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos
5.
Biosens Bioelectron ; 183: 113207, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33866136

RESUMO

Rapid detection of DNA/RNA pathogenic sequences or variants through point-of-care diagnostics is valuable for accelerated clinical prognosis, as witnessed during the recent COVID-19 outbreak. Traditional methods relying on qPCR or sequencing are tough to implement with limited resources, necessitating the development of accurate and robust alternative strategies. Here, we report FnCas9 Editor Linked Uniform Detection Assay (FELUDA) that utilizes a direct Cas9 based enzymatic readout for detecting nucleobase and nucleotide sequences without trans-cleavage of reporter molecules. We also demonstrate that FELUDA is 100% accurate in detecting single nucleotide variants (SNVs), including heterozygous carriers, and present a simple web-tool JATAYU to aid end-users. FELUDA is semi-quantitative, can adapt to multiple signal detection platforms, and deploy for versatile applications such as molecular diagnosis during infectious disease outbreaks like COVID-19. Employing a lateral flow readout, FELUDA shows 100% sensitivity and 97% specificity across all ranges of viral loads in clinical samples within 1hr. In combination with RT-RPA and a smartphone application True Outcome Predicted via Strip Evaluation (TOPSE), we present a prototype for FELUDA for CoV-2 detection closer to home.


Assuntos
Técnicas Biossensoriais , COVID-19 , Teste para COVID-19 , Humanos , RNA Viral , SARS-CoV-2 , Sensibilidade e Especificidade
6.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180049

RESUMO

We examined interactions between the 83 kDa heat-shock protein (Hsp83) and hsrω long noncoding RNAs (lncRNAs) in hsrω66 Hsp90GFP homozygotes, which almost completely lack hsrω lncRNAs but over-express Hsp83. All +/+; hsrω66 Hsp90GFP progeny died before the third instar. Rare Sp/CyO; hsrω66 Hsp90GFP reached the third instar stage but phenocopied l(2)gl mutants, becoming progressively bulbous and transparent with enlarged brain and died after prolonged larval life. Additionally, ventral ganglia too were elongated. However, hsrω66 Hsp90GFP/TM6B heterozygotes, carrying +/+ or Sp/CyO second chromosomes, developed normally. Total RNA sequencing (+/+, +/+; hsrω66/hsrω66, Sp/CyO; hsrω66/ hsrω66, +/+; Hsp90GFP/Hsp90GFP and Sp/CyO; hsrω66 Hsp90GFP/hsrω66 Hsp90GFP late third instar larvae) revealed similar effects on many genes in hsrω66 and Hsp90GFP homozygotes. Besides additive effect on many of them, numerous additional genes were affected in Sp/CyO; hsrω66 Hsp90GFP larvae, with l(2)gl and several genes regulating the central nervous system being highly down-regulated in surviving Sp/CyO; hsrω66 Hsp90GFP larvae, but not in hsrω66 or Hsp90GFP single mutants. Hsp83 and several omega speckle-associated hnRNPs were bioinformatically found to potentially bind with these gene promoters and transcripts. Since Hsp83 and hnRNPs are also known to interact, elevated Hsp83 in an altered background of hnRNP distribution and dynamics, due to near absence of hsrω lncRNAs and omega speckles, can severely perturb regulatory circuits with unexpected consequences, including down-regulation of tumoursuppressor genes such as l(2)gl.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/genética , Larva/genética , RNA Longo não Codificante/genética , Mutações Sintéticas Letais , Animais , Animais Geneticamente Modificados , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Gânglios dos Invertebrados/crescimento & desenvolvimento , Gânglios dos Invertebrados/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Heterozigoto , Homozigoto , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fenótipo , RNA Longo não Codificante/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA