Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(12): 100457, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028604

RESUMO

Second generation (2G) chimeric antigen receptors (CARs) contain a CD28 or 41BB co-stimulatory endodomain and elicit remarkable efficacy in hematological malignancies. Third generation (3G) CARs extend this linear blueprint by fusing both co-stimulatory units in series. However, clinical impact has been muted despite compelling evidence that co-signaling by CD28 and 41BB can powerfully amplify natural immune responses. We postulate that effective dual co-stimulation requires juxta-membrane positioning of endodomain components within separate synthetic receptors. Consequently, we designed parallel (p)CARs in which a 2G (CD28+CD3ζ) CAR is co-expressed with a 41BB-containing chimeric co-stimulatory receptor. We demonstrate that the pCAR platform optimally harnesses synergistic and tumor-dependent co-stimulation to resist T cell exhaustion and senescence, sustaining proliferation, cytokine release, cytokine signaling, and metabolic fitness upon repeated stimulation. When engineered using targeting moieties of diverse composition, affinity, and specificity, pCAR T cells consistently elicit superior anti-tumor activity compared with T cells that express traditional linear CARs.


Assuntos
Antígenos CD28/metabolismo , Membrana Celular/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Integrinas/metabolismo , Linfoma/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Mucina-1/metabolismo , Multimerização Proteica , Receptores de Fator Estimulador de Colônias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Lett ; 393: 52-59, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223167

RESUMO

Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4+ T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma.


Assuntos
Receptores ErbB/metabolismo , Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Interleucina-4/metabolismo , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/transplante , Mesotelioma/terapia , Neoplasias Pleurais/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Receptores ErbB/imunologia , Humanos , Interleucina-4/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mesotelioma/genética , Mesotelioma/imunologia , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos SCID , Neoplasias Pleurais/genética , Neoplasias Pleurais/imunologia , Neoplasias Pleurais/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Transdução Genética , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Immunol ; 8: 1112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959256

RESUMO

Monoclonal antibodies find broad application as therapy for various types of cancer by employing multiple mechanisms of action against tumors. Manipulating the Fc-mediated functions of antibodies that engage immune effector cells, such as NK cells, represents a strategy to influence effector cell activation and to enhance antibody potency and potentially efficacy. We developed a novel approach to generate and ascertain the functional attributes of Fc mutant monoclonal antibodies. This entailed coupling single expression vector (pVitro1) antibody cloning, using polymerase incomplete primer extension (PIPE) polymerase chain reaction, together with simultaneous Fc region point mutagenesis and high yield transient expression in human mammalian cells. Employing this, we engineered wild type, low (N297Q, NQ), and high (S239D/I332E, DE) FcR-binding Fc mutant monoclonal antibody panels recognizing two cancer antigens, HER2/neu and chondroitin sulfate proteoglycan 4. Antibodies were generated with universal mutagenic primers applicable to any IgG1 pVitro1 constructs, with high mutagenesis and transfection efficiency, in small culture volumes, at high yields and within 12 days from design to purified material. Antibody variants conserved their Fab-mediated recognition of target antigens and their direct anti-proliferative effects against cancer cells. Fc mutations had a significant impact on antibody interactions with Fc receptors (FcRs) on human NK cells, and consequently on the potency of NK cell activation, quantified by immune complex-mediated calcium mobilization and by antibody-dependent cellular cytotoxicity (ADCC) of tumor cells. This strategy for manipulation and testing of Fc region engagement with cognate FcRs can facilitate the design of antibodies with defined effector functions and potentially enhanced efficacy against tumor cells.

4.
Oncoimmunology ; 6(12): e1363137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209570

RESUMO

Mesothelioma is an incurable cancer for which effective therapies are required. Aberrant MET expression is prevalent in mesothelioma, although targeting using small molecule-based therapeutics has proven disappointing. Chimeric antigen receptors (CARs) couple the HLA-independent binding of a cell surface target to the delivery of a tailored T-cell activating signal. Here, we evaluated the anti-tumor activity of MET re-targeted CAR T-cells against mesothelioma. Using immunohistochemistry, MET was detected in 67% of malignant pleural mesotheliomas, most frequently of epithelioid or biphasic subtype. The presence of MET did not influence patient survival. Candidate MET-specific CARs were engineered in which a CD28+CD3ζ endodomain was fused to one of 3 peptides derived from the N and K1 domains of hepatocyte growth factor (HGF), which represents the minimum MET binding element present in this growth factor. Using an NIH3T3-based artificial antigen-presenting cell system, we found that all 3 candidate CARs demonstrated high specificity for MET. By contrast, these CARs did not mediate T-cell activation upon engagement of other HGF binding partners, namely CD44v6 or heparan sulfate proteoglycans, including Syndecan-1. NK1-targeted CARs demonstrated broadly similar in vitro potency, indicated by destruction of MET-expressing mesothelioma cell lines, accompanied by cytokine release. In vivo anti-tumor activity was demonstrated following intraperitoneal delivery to mice with an established mesothelioma xenograft. Progressive tumor regression occurred without weight loss or other clinical indicators of toxicity. These data confirm the frequent expression of MET in malignant pleural mesothelioma and demonstrate that this can be targeted effectively and safely using a CAR T-cell immunotherapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA