Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(18): 3424-3437.e8, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113412

RESUMO

Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.


Assuntos
Biossíntese de Proteínas , Ribossomos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo
2.
EMBO J ; 40(15): e107976, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34184765

RESUMO

Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress-inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature-dependent Ser/Arg-rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA-binding proteins revealed HSATIII association with proteins related to N6 -methyladenosine (m6 A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6 A-modified. nSBs sequester the m6 A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6 A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6 A modification of pre-mRNAs, leading to repression of m6 A-dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature-dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6 A-modified architectural lncRNAs.


Assuntos
Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Temperatura
3.
J Virol ; : e0074724, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819171

RESUMO

Although the herpes simplex virus type 1 (HSV-1) genome was thought to contain approximately 80 different protein coding sequences (CDSs), recent multi-omics analyses reported HSV-1 encodes more than 200 potential CDSs. However, few of the newly identified CDSs were confirmed to be expressed at the peptide or protein level in HSV-1-infected cells. Furthermore, the impact of the proteins they encode on HSV-1 infection is largely unknown. This study focused on a newly identified CDS, UL31.6. Re-analyzation of our previous chemical proteomics data verified that UL31.6 was expressed at the peptide level in HSV-1-infected cells. Antisera raised against a viral protein encoded by UL31.6 (pUL31.6) reacted with a protein with an approximate molecular mass of 37 kDa in lysates of Vero cells infected with each of three HSV-1 strains. pUL31.6 was efficiently dissociated from virions in high-salt solution. A UL31.6-null mutation had a minimal effect on HSV-1 gene expression, replication, cell-to-cell spread, and morphogenesis in Vero cells; in contrast, it significantly reduced HSV-1 cell-to-cell spread in three neural cells but not in four non-neural cells including Vero cells. The UL31.6-null mutation also significantly reduced the mortality and viral replication in the brains of mice after intracranial infection, but had minimal effects on pathogenic manifestations in and around the eyes, and viral replication detected in the tear films of mice after ocular infection. These results indicated that pUL31.6 was a tegument protein and specifically acted as a neurovirulence factor by potentially promoting viral transmission between neuronal cells in the central nervous system.IMPORTANCERecent multi-omics analyses reported the herpes simplex virus type 1 (HSV-1) genome encodes an additional number of potential coding sequences (CDSs). However, the expressions of these CDSs at the peptide or protein levels and the biological effects of these CDSs on HSV-1 infection remain largely unknown. This study annotated a cryptic orphan CDS, termed UL31.6, an HSV-1 gene that encodes a tegument protein with an approximate molecular mass of 37 kDa, which specifically acts as a neurovirulence factor. Our study indicates that HSV-1 proteins important for viral pathogenesis remain to be identified and a comprehensive understanding of the pathogenesis of HSV-1 will require not only the identification of cryptic orphan CDSs using emerging technologies but also step-by-step and in-depth analyses of each of the cryptic orphan CDSs.

4.
Mol Cancer ; 23(1): 126, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862995

RESUMO

BACKGROUND: In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS: We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS: We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS: Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.


Assuntos
Adenocarcinoma de Pulmão , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Mutação , Biomarcadores Tumorais/genética , Feminino , Masculino , Variação Estrutural do Genoma , Genômica/métodos , Pessoa de Meia-Idade , Prognóstico , Idoso
5.
Cancer Sci ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710200

RESUMO

RNAs, such as noncoding RNA, microRNA, and recently mRNA, have been recognized as signal transduction molecules. CD271, also known as nerve growth factor receptor, has a critical role in cancer, although the precise mechanism is still unclear. Here, we show that CD271 mRNA, but not CD271 protein, facilitates spheroid cell proliferation. We established CD271-/- cells lacking both mRNA and protein of CD271, as well as CD271 protein knockout cells lacking only CD271 protein, from hypopharyngeal and oral squamous cell carcinoma lines. Sphere formation was reduced in CD271-/- cells but not in CD271 protein knockout cells. Mutated CD271 mRNA, which is not translated to a protein, promoted sphere formation. CD271 mRNA bound to hnRNPA2B1 protein at the 3'-UTR region, and the inhibition of this interaction reduced sphere formation. In surgical specimens, the CD271 mRNA/protein expression ratio was higher in the cancerous area than in the noncancerous area. These data suggest CD271 mRNA has dual functions, encompassing protein-coding and noncoding roles, with its noncoding RNA function being predominant in oral and head and neck squamous cell carcinoma.

6.
EMBO J ; 39(3): e102729, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782550

RESUMO

A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.


Assuntos
Núcleo Celular/metabolismo , Resposta ao Choque Térmico , Repetições de Microssatélites , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Células CHO , Cricetulus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Íntrons , Fosforilação , Fatores de Processamento de RNA/metabolismo , Sequenciamento do Exoma
7.
PLoS Genet ; 17(7): e1009683, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319983

RESUMO

Long noncoding RNAs (lncRNAs) are vastly transcribed and extensively studied but lncRNAs overlapping with the sense orientation of mRNA have been poorly studied. We analyzed the lncRNA DAPALR overlapping with the 5´ UTR of the Doublesex1 (Dsx1), the male determining gene in Daphnia magna. By affinity purification, we identified an RNA binding protein, Shep as a DAPALR binding protein. Shep also binds to Dsx1 5´ UTR by recognizing the overlapping sequence and suppresses translation of the mRNA. In vitro and in vivo analyses indicated that DAPALR increased Dsx1 translation efficiency by sequestration of Shep. This regulation was impaired when the Shep binding site in DAPALR was deleted. These results suggest that Shep suppresses the unintentional translation of Dsx1 by setting a threshold; and when the sense lncRNA DAPALR is expressed, DAPALR cancels the suppression caused by Shep. This mechanism may be important to show dimorphic gene expressions such as sex determination and it may account for the binary expression in various developmental processes.


Assuntos
Regulação da Expressão Gênica/genética , RNA Longo não Codificante/genética , Processos de Determinação Sexual/genética , Regiões 5' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Daphnia/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Masculino , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
EMBO J ; 38(17): e102870, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31368590

RESUMO

The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
9.
J Virol ; 96(10): e0030622, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475666

RESUMO

This study developed a system consisting of two rounds of screening cellular proteins involved in the nuclear egress of herpes simplex virus 1 (HSV-1). Using this system, we first screened cellular proteins that interacted with the HSV-1 nuclear egress complex (NEC) consisting of UL34 and UL31 in HSV-1-infected cells, which are critical for the nuclear egress of HSV-1, by tandem affinity purification coupled with mass spectrometry-based proteomics technology. Next, we performed CRISPR/Cas9-based screening of live HSV-1-infected reporter cells under fluorescence microscopy using single guide RNAs targeting the cellular proteins identified in the first proteomic screening to detect the mislocalization of the lamin-associated protein emerin, which is a phenotype for defects in HSV-1 nuclear egress. This study focused on a cellular orphan transporter SLC35E1, one of the cellular proteins identified by the screening system. Knockout of SLC35E1 reduced HSV-1 replication and induced membranous invaginations containing perinuclear enveloped virions (PEVs) adjacent to the nuclear membrane (NM), aberrant accumulation of PEVs in the perinuclear space between the inner and outer NMs and the invagination structures, and mislocalization of the NEC. These effects were similar to those of previously reported mutation(s) in HSV-1 proteins and depletion of cellular proteins that are important for HSV-1 de-envelopment, one of the steps required for HSV-1 nuclear egress. Our newly established screening system enabled us to identify a novel cellular protein required for efficient HSV-1 de-envelopment. IMPORTANCE The identification of cellular protein(s) that interact with viral effector proteins and function in important viral procedures is necessary for enhancing our understanding of the mechanics of various viral processes. In this study, we established a new system consisting of interactome screening for the herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), followed by loss-of-function screening to target the identified putative NEC-interacting cellular proteins to detect a defect in HSV-1 nuclear egress. This newly established system identified SLC35E1, an orphan transporter, as a novel cellular protein required for efficient HSV-1 de-envelopment, providing an insight into the mechanisms involved in this viral procedure.


Assuntos
Herpesvirus Humano 1 , Proteínas de Membrana Transportadoras , Liberação de Vírus , Animais , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares , Proteômica , Células Vero , Proteínas Virais/metabolismo
10.
Am J Transplant ; 22(3): 731-744, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932270

RESUMO

Unlimited organ availability would represent a paradigm shift in transplantation. Long-term in vivo engraftment and function of scaled-up bioengineered liver grafts have not been previously reported. In this study, we describe a human-scale transplantable liver graft engineered on a porcine liver-derived scaffold. We repopulated the scaffold parenchyma with primary hepatocytes and the vascular system with endothelial cells. For in vivo functional testing, we performed auxiliary transplantation of the repopulated scaffold in pigs with induced liver failure. It was observed that the auxiliary bioengineered liver graft improved liver function for 28 days and exhibited upregulation of liver-specific genes. This study is the first of its kind to present 28 days of posttransplant evaluation of a bioengineered liver graft using a preclinical large animal model. Furthermore, it provides definitive evidence for the feasibility of engineering human-scale transplantable liver grafts for clinical applications.


Assuntos
Falência Hepática , Transplante de Fígado , Animais , Células Endoteliais , Hepatócitos/transplante , Fígado/irrigação sanguínea , Suínos , Engenharia Tecidual , Alicerces Teciduais
11.
RNA Biol ; 19(1): 703-718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35510877

RESUMO

Circadian clocks are an endogenous internal timekeeping mechanism that drives the rhythmic expression of genes, controlling the 24 h oscillatory pattern in behaviour and physiology. It has been recently shown that post-transcriptional mechanisms are essential for controlling rhythmic gene expression. Controlling the stability of mRNA through poly(A) tail length modulation is one such mechanism. In this study, we show that Cnot1, encoding the scaffold protein of the CCR4-NOT deadenylase complex, is highly expressed in the suprachiasmatic nucleus, the master timekeeper. CNOT1 deficiency in mice results in circadian period lengthening and alterations in the mRNA and protein expression patterns of various clock genes, mainly Per2. Per2 mRNA exhibited a longer poly(A) tail and increased mRNA stability in Cnot1+/- mice. CNOT1 is recruited to Per2 mRNA through BRF1 (ZFP36L1), which itself oscillates in antiphase with Per2 mRNA. Upon Brf1 knockdown, Per2 mRNA is stabilized leading to increased PER2 expression levels. This suggests that CNOT1 plays a role in tuning and regulating the mammalian circadian clock.


Assuntos
Ritmo Circadiano , Proteínas Circadianas Period , Animais , Camundongos , Ritmo Circadiano/genética , Mamíferos/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo
12.
EMBO Rep ; 20(11): e48220, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31482640

RESUMO

Codon bias has been implicated as one of the major factors contributing to mRNA stability in several model organisms. However, the molecular mechanisms of codon bias on mRNA stability remain unclear in humans. Here, we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias. Bioinformatics analysis showed that codons could be clustered into two distinct groups-codons with G or C at the third base position (GC3) and codons with either A or T at the third base position (AT3): the former stabilizing while the latter destabilizing mRNA. Quantification of codon bias showed that increased GC3-content entails proportionately higher GC-content. Through bioinformatics, ribosome profiling, and in vitro analysis, we show that decoupling the effects of codon bias reveals two modes of mRNA regulation, one GC3- and one GC-content dependent. Employing an immunoprecipitation-based strategy, we identify ILF2 and ILF3 as RNA-binding proteins that differentially regulate global mRNA abundances based on codon bias. Our results demonstrate that codon bias is a two-pronged system that governs mRNA abundance.


Assuntos
Uso do Códon , Códon , RNA Mensageiro/genética , Biologia Computacional/métodos , Guanilato Ciclase/genética , Humanos , Proteína do Fator Nuclear 45/metabolismo , Estabilidade de RNA , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica
13.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297405

RESUMO

Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3' regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Estabilidade de RNA , Animais , Proteínas CELF1/genética , Proteínas CELF1/metabolismo , Feminino , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
14.
Biochem Biophys Res Commun ; 516(2): 419-423, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31227213

RESUMO

Nuclear stress bodies (nSBs) are thermal stress-inducible membrane-less nuclear bodies that are formed on highly repetitive satellite III architectural noncoding RNAs (HSATIII arcRNAs). Upon thermal stress exposure, HSATIII expression is induced to sequestrate specific sets of RNA-binding proteins and form nSBs. The major population of nSBs contain SAFB as a marker, whereas the minor population are SAFB-negative. Here, we found that HNRNPM, which was previously reported to localize in nuclear foci adjacent to SAFB-positive foci upon thermal stress, localizes in a minor population of HSATIII-dependent nSBs. Hence, we used the terms nSB-S and nSB-M to distinguish the SAFB foci and HNRNPM foci, respectively. Analysis of the components of the nSBs revealed that each set contains distinct RNA-binding proteins, including SLTM and NCO5A in nSB-Ss and HNRNPA1 and HNRNPH1 in nSB-Ms. Overall, our findings indicate that two sets of nSBs containing HSATIII arcRNAs and distinct sets of RNA-binding proteins are formed upon thermal stress exposure.


Assuntos
Núcleo Celular/metabolismo , RNA Satélite/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Estresse Fisiológico , Temperatura , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo
15.
Nucleic Acids Res ; 42(15): 10037-49, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25106868

RESUMO

Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics.


Assuntos
Fator 1 de Resposta a Butirato/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Receptores de LDL/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(15): 5693-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451911

RESUMO

Histone gene expression is tightly coordinated with DNA replication, as it is activated at the onset of S phase and suppressed at the end of S phase. Replication-dependent histone gene expression is precisely controlled at both transcriptional and posttranscriptional levels. U7 small nuclear ribonucleoprotein (U7 snRNP) is involved in the 3'-end processing of nonpolyadenylated histone mRNAs, which is required for S phase-specific gene expression. The present study reports a unique function of U7 snRNP in the repression of histone gene transcription under cell cycle-arrested conditions. Elimination of U7 snRNA with an antisense oligonucleotide in HeLa cells as well as in nontransformed human lung fibroblasts resulted in elevated levels of replication-dependent H1, H2A, H2B, H3, and H4 histone mRNAs but not of replication-independent H3F3B histone mRNA. An analogous effect was observed upon depletion of Lsm10, a component of the U7 snRNP-specific Sm ring, with siRNA. Pulse-chase experiments revealed that U7 snRNP acts to repress transcription without remarkably altering mRNA stability. Mass spectrometric analysis of the captured U7 snRNP from HeLa cell extracts identified heterogeneous nuclear (hn)RNP UL1 as a U7 snRNP interaction partner. Further knockdown and overexpression experiments revealed that hnRNP UL1 is responsible for U7 snRNP-dependent transcriptional repression of replication-dependent histone genes. Chromatin immunoprecipitation confirmed that hnRNP UL1 is recruited to the histone gene locus only when U7 snRNP is present. These findings support a unique mechanism of snRNP-mediated transcriptional control that restricts histone synthesis to S phase, thereby preventing the potentially toxic effects of histone synthesis at other times in the cell cycle.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Histonas/genética , Proteínas Repressoras/metabolismo , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Transcrição Gênica , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
17.
J Biol Chem ; 288(51): 36351-60, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24196961

RESUMO

In the canonical Wnt signaling pathway, the translocation of ß-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of ß-catenin function via importin-ß5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of ß-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-ß5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and ß-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of ß-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of ß-catenin in the canonical Wnt signaling pathway.


Assuntos
Núcleo Celular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , beta Carioferinas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Desgrenhadas , Embrião não Mamífero/metabolismo , Células HEK293 , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Ativadoras de ras GTPase/genética
18.
PLoS One ; 19(2): e0297285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359035

RESUMO

Reconstruction of the biliary system is indispensable for the regeneration of transplantable liver grafts. Here, we report the establishment of the first continuous three-dimensional biliary system scaffold for bile acid excretion using a novel method. We confirmed the preservation of the liver-derived extracellular matrix distribution in the scaffold. In addition, hepatocyte progenitors decellularized via the bile duct by slow-speed perfusion differentiated into hepatocyte- and cholangiocyte-like cells, mimicking hepatic cords and bile ducts, respectively. Furthermore, qRT-PCR demonstrated increased ALB, BSEP, and AQP8 expression, revealing bile canaliculi- and bile duct-specific genetic patterns. Therefore, we concluded that locally preserved extracellular matrices in the scaffold stimulated hepatic progenitors and provided efficient differentiation, as well as regeneration of a three-dimensional continuous biliary system from hepatic cords through bile ducts. These findings suggest that organ-derived scaffolds can be utilized for the efficient reconstruction of functional biliary systems.


Assuntos
Sistema Biliar , Fígado , Hepatócitos , Ductos Biliares , Matriz Extracelular
19.
Cell Transplant ; 33: 9636897241253700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770981

RESUMO

Hepatocyte transplantation (HCT) is a potential bridging therapy or an alternative to liver transplantation. Conventionally, single-cell hepatocytes are injected via the portal vein. This strategy, however, has yet to overcome poor cell engraftment and function. Therefore, we developed an orthotopic HCT method using a liver-derived extracellular matrix (L-ECM) gel. PXB cells (flesh mature human hepatocytes) were dispersed into the hydrogel solution in vitro, and the gel solution was immediately gelated in 37°C incubators to investigate the affinity between mature human hepatocyte and the L-ECM gel. During the 3-day cultivation in hepatocyte medium, PXB cells formed cell aggregates via cell-cell interactions. Quantitative analysis revealed human albumin production in culture supernatants. For the in vivo assay, PXB cells were encapsulated in the L-ECM gel and transplanted between the liver lobes of normal rats. Pathologically, the L-ECM gel was localized at the transplant site and retained PXB cells. Cell survival and hepatic function marker expression were verified in another rat model wherein thioacetamide was administered to induce liver fibrosis. Moreover, cell-cell interactions and angiogenesis were enhanced in the L-ECM gel compared with that in the collagen gel. Our results indicate that L-ECM gels can help engraft transplanted hepatocytes and express hepatic function as a scaffold for cell transplantation.


Assuntos
Comunicação Celular , Hepatócitos , Cirrose Hepática , Hepatócitos/citologia , Hepatócitos/transplante , Hepatócitos/metabolismo , Animais , Humanos , Cirrose Hepática/terapia , Cirrose Hepática/patologia , Ratos , Neovascularização Fisiológica , Matriz Extracelular/metabolismo , Masculino , Fígado , Hidrogéis/química , Engenharia Tecidual/métodos , Ratos Sprague-Dawley , Células Cultivadas , Angiogênese
20.
Sci Rep ; 13(1): 22231, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097629

RESUMO

In recent years, research has explored the use of microRNA (miRNA) analysis in extracellular vesicles (EVs) as a minimally invasive strategy for the diagnosis and prediction of diseases. This is because miRNAs in EVs partly reflect the miRNA information and cellular status of the origin cells. However, not all intracellular miRNAs are internalized into EVs. Therefore, the miRNA information obtained from EVs is limited. To get more miRNA information, we aimed to produce artificial EVs (aEVs) encapsulating Argonaute 2 (Ago2) miRNA-binding protein, which actively incorporate miRNAs within themselves. In this study, we utilized the protein EPN-01, which is capable of releasing aEVs encapsulating it and associated proteins. This system enables us to obtain more miRNA species and increase each miRNA's yield in the EV fraction. Furthermore, we examined whether miRNAs in the EV fraction using our system reflect the cellular condition. In cells treated with CoCl2, a reagent for inducing a hypoxia-mimic state, we detected a change in the level of hypoxia marker miR-210 with aEVs. To the best of our knowledge, this is the first report on a method to increase the yield and variety of endogenous miRNAs in the EV fraction. This approach leads to improved accuracy of cell status assessment using miRNAs in EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA