Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 17, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726088

RESUMO

BACKGROUND: The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS: To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS: Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.


Assuntos
Proteínas Repressoras , Expansão das Repetições de Trinucleotídeos , Humanos , Camundongos , Animais , Alelos , Ataxina-3/genética , Ataxina-3/metabolismo , Reprodutibilidade dos Testes , Expansão das Repetições de Trinucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Huntingtina/genética , Proteínas Repressoras/genética
2.
Cell Rep Methods ; 4(7): 100816, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981474

RESUMO

We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.


Assuntos
Camundongos Endogâmicos C57BL , Células de Purkinje , Animais , Células de Purkinje/metabolismo , Camundongos , Núcleo Celular/metabolismo , Cerebelo/metabolismo , Cerebelo/citologia , Anticorpos , Proteínas de Ligação ao GTP , D-Ala-D-Ala Carboxipeptidase Tipo Serina
3.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214832

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. SCA7 patients display a striking loss of Purkinje cell (PC) neurons with disease progression; however, PCs are rare, making them difficult to characterize. We developed a PC nuclei enrichment protocol and applied it to single-nucleus RNA-seq of a SCA7 knock-in mouse model. Our results unify prior observations into a central mechanism of cell identity loss, impacting both glia and PCs, driving accumulation of inhibitory synapses and altered PC spiking. Zebrin-II subtype dysregulation is the predominant signal in PCs, leading to complete loss of zebrin-II striping at motor symptom onset in SCA7 mice. We show this zebrin-II subtype degradation is shared across Polyglutamine Ataxia mouse models and SCA7 patients. It has been speculated that PC subtype organization is critical for cerebellar function, and our results suggest that a breakdown of zebrin-II parasagittal striping is pathological.

4.
Cells ; 10(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440639

RESUMO

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


Assuntos
Diferenciação Celular , Fator de Transcrição PAX7/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Fator de Transcrição PAX7/genética , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia , Transdução de Sinais , Carga Tumoral
5.
Acta Biochim Pol ; 66(4): 509-520, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883362

RESUMO

Epithelial to mesenchymal transition (EMT) is a process during which cancer cells lose epithelial features, cytoskeletal architecture is re-organized, cell shape changes and cells activate genes that help to define mesenchymal phenotype, what leads to an increased cell motility and dissemination of tumor to distant metastatic sites. This review describes different signaling networks between microRNAs and proteins that regulate EMT in tumor growth. Activation of EMT is mediated via series of paracrine signaling molecules. WNT, TGF-b, NOTCH and Shh signaling pathways play crucial roles in activation of EMT-related transcription factors, such as SNAIL, SLUG, ZEB1/2 or TWIST. Recent data provide evidence that crosstalk between microRNAs, long non-coding RNAs and EMT-transcription factors is crucial event in EMT regulation. MicroRNAs affect also level of proteins responsible for cellular contact, adhesion and cytoskeletal proteins, what induces changes of epithelial to mesenchymal phenotype. Understanding of those signaling networks may help to identify novel biomarkers or develop new treatment strategies based on microRNA therapeutics in future.


Assuntos
Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias/genética , Proteínas Hedgehog/genética , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Receptores Notch/genética , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta/genética , Proteína 1 Relacionada a Twist/genética , Via de Sinalização Wnt/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA