RESUMO
The superior colliculus receives a direct projection from retinal ganglion cells. In primates, it remains unknown if the same ganglion cells also supply the lateral geniculate nucleus. To address this issue, a double-label experiment was performed in two male macaques. The animals fixated a target while injection sites were scouted in the superior colliculus by recording and stimulating with a tetrode. Once suitable sites were identified, cholera toxin subunit B-Alexa Fluor 488 was injected via an adjacent micropipette. In a subsequent acute experiment, cholera toxin subunit B-Alexa Fluor 555 was injected into the lateral geniculate nucleus at matching retinotopic locations. After a brief survival period, ganglion cells were examined in retinal flatmounts. The percentage of double-labeled cells varied locally, depending on the relative efficiency of retrograde transport by each tracer and the precision of retinotopic overlap of injection sites in each target nucleus. In counting boxes with extensive overlap, 76-98% of ganglion cells projecting to the superior colliculus were double labeled. Cells projecting to the superior colliculus constituted 4.0-6.7% of the labeled ganglion cell population. In one particularly large zone, there were 5,746 cells labeled only by CTB-AF555, 561cells double labeled by CTB-AF555 and CTB-AF488, but no cell labeled only by CTB-AF488. These data indicate that retinal input to the macaque superior colliculus arises from a collateral axonal branch supplied by â¼5% of the ganglion cells that project to the lateral geniculate nucleus. Surprisingly, there exist no ganglion cells that project exclusively to the SC.
Assuntos
Axônios , Corpos Geniculados , Retina , Colículos Superiores , Vias Visuais , Animais , Colículos Superiores/fisiologia , Colículos Superiores/citologia , Masculino , Corpos Geniculados/fisiologia , Corpos Geniculados/citologia , Vias Visuais/fisiologia , Axônios/fisiologia , Retina/fisiologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Macaca mulatta , Toxina da Cólera/metabolismoRESUMO
People with strabismus acquired during childhood do not experience diplopia (double vision). To investigate how perception of the duplicate image is suppressed, we raised two male monkeys with alternating exotropia by disinserting the medial rectus muscle in each eye at age four weeks. Once the animals were mature, they were brought to the laboratory and trained to fixate a small spot while recordings were made in primary visual cortex (V1). Drifting gratings were presented to the receptive fields of 500 single neurons for eight interleaved conditions: (1) right eye monocular; (2) left eye monocular; (3) right eye's field, right eye fixating; (4) right eye's field, left eye fixating; (5) left eye's field, right eye fixating; (6) left eye's field, left eye fixating; (7) both eyes' fields, right eye fixating; (8) both eyes' fields, left eye fixating. As expected, ocular dominance histograms showed a monocular bias compared with normal animals, but many cells could still be driven via both eyes. Overall, neuronal responses were not affected by switches in ocular fixation. Individual neurons exhibited binocular interactions, but mean population indices indicated no net interocular suppression or facilitation. Even neurons located in cortex with reduced cytochrome oxidase (CO) activity, representing portions of the nasal visual field where perception is suppressed during binocular viewing, showed no net inhibition. These data indicate that V1 neurons do not appear to reflect strabismic suppression and therefore the elimination of diplopia is likely to be mediated at a higher cortical level.SIGNIFICANCE STATEMENT In patients with strabismus, images fall on non-corresponding points in the two retinas. Only one image is perceived, because signals emanating from the other eye that convey the duplicate image are suppressed. The benefit is that diplopia is prevented, but the penalty is that the visual feedback required to adjust eye muscle tone to realign the globes is eliminated. Here, we report the first electrophysiological recordings from the primary visual cortex (V1) in awake monkeys raised with strabismus. The experiments were designed to reveal how perception of double images is avoided.
Assuntos
Exotropia/fisiopatologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Macaca mulatta , Masculino , Visão Binocular/fisiologiaRESUMO
BACKGROUND: CCR5 is a motility chemokine receptor implicated in tumor progression, whose activation and subsequent endocytosis may identify highly aggressive breast cancer cell subtypes likely to spread into the circulatory system. METHODS: The MDA-MB-231 cell line was used to model and visualize CCR5 activation by stimulation with RANTES, in an effort to quantify CCR5 endocytosis from the cell surface to the perinuclear space. CCR5 expression was then examined in tumor-associated cells (TACs), consisting of circulating tumor cells and circulating stromal cells, isolated from the peripheral blood of 54 metastatic breast cancer (mBC) patients to evaluate these CCR5 pooling patterns as they relate to progression and survival over 2 years. RESULTS: In MB231 experiments, it was observed that CCR5 formed ~ 1 micron clusters identified as "CCR5 pools" on the surface of the cell, which in the presence of RANTES were endocytosed and translocated to the cell cytoplasm. When TACs from patients were analyzed, CCR5 pools were observed on the cell surface and translocating to the nuclear area, with CCR5 also having a positive statistical correlation between increased numbers of TACs and increased CCR5 pools on the cells. Further, it was determined that patients with very high numbers of CCR5 (> 10 CCR5 pools), specifically in the circulating stromal cells, were associated with worse progression-free survival (hazard ratio = 4.5, p = 0.002) and worse overall survival (hazard ratio = 3.7, p = 0.014). CONCLUSIONS: Using a liquid biopsy approach, we evaluated two populations of tumor-associated cells emanating from primary tumors, with data suggesting that upregulation of the motility chemokine CCR5 in TACs provides clinically relevant opportunities for treating and tracking drug targetable receptors in mBC.
Assuntos
Neoplasias da Mama , Quimiocina CCL5 , Células Neoplásicas Circulantes , Receptores CCR5 , Neoplasias da Mama/metabolismo , Quimiocina CCL5/genética , Endocitose , Feminino , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismoRESUMO
The usage of beta blockers in breast cancer (BC) patients is implicated in the reduction in distant metastases, cancer recurrence, and cancer mortality. Studies suggest that the adrenergic pathway is directly involved in sympathetic-driven hematopoietic activation of pro-tumor microenvironmental proliferation and tumor cell trafficking into the circulation. Cancer-associated macrophage-like cells (CAMLs) are pro-tumor polynucleated monocytic cells of hematopoietic origin emanating from tumors which may aid in circulating tumor cell (CTC) dissemination into the circulation. We examined the linkage between Beta-2 adrenergic receptor (B2AR) signaling in CAMLs and CTCs by establishing expression profiles in a model BC cell line (MDA-MB-231). We compared the model to CAMLs and CTCs found in patents. Although internalization events were observed in patients, differences were found in the expression of B2AR between the tumor cell lines and the CAMLs found in patients. High B2AR expression on patients' CAMLs was correlated with significantly more CAMLs in the circulation (p = 0.0093), but CTCs had no numerical relationship (p = 0.1565). High B2AR CAML expression was also significantly associated with a larger size of CAMLs (p = 0.0073), as well as being significantly associated with shorter progression-free survival (p = 0.0097) and overall survival (p = 0.0265). These data suggest that B2AR expression on CAMLs is closely related to the activation, intravasation, and growth of CAMLs in the circulation.
Assuntos
Neoplasias da Mama , Macrófagos , Células Neoplásicas Circulantes , Receptores Adrenérgicos beta 2 , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Receptores Adrenérgicos beta 2/metabolismoRESUMO
Diplopia (double vision) in strabismus is prevented by suppression of the image emanating from one eye. In a recent study conducted in two macaques raised with exotropia (an outward ocular deviation) but having normal acuity in each eye, simultaneous display of stimuli to each eye did not induce suppression in V1 neurons. Puzzled by this negative result, we have modified our protocol to display stimuli in a staggered sequence, rather than simultaneously. Additional recordings were made in the same two macaques, following two paradigms. In trial type 1, the receptive field in one eye was stimulated with a sine-wave grating while the other eye was occluded. After 5 s, the occluder was removed and the neuron was stimulated for another 5 s. The effect of uncovering the eye, which potentially exposed the animal to diplopia, was quantified by the peripheral retinal interaction index (PRII). In trial type 2, the receptive field in the fixating eye was stimulated with a grating during binocular viewing. After 5 s, a second grating appeared in the receptive field of the nonfixating eye. The impact of the second grating, which had the potential to generate visual confusion, was quantified by the receptive field interaction index (RFII). For 82 units, the mean PRII was 0.48 ± 0.05 (0.50 = no suppression) and the mean RFII was 0.46 ± 0.08 (0.50 = no suppression). These values suggest mild suppression, but the modest decline in spike rate registered during the second epoch of visual stimulation might have been due to neuronal adaptation, rather than interocular suppression. In a few instances neurons showed unequivocal suppression, but overall, these recordings did not support the contention that staggered stimulus presentation is more effective than simultaneous stimulus presentation at evoking interocular suppression in V1 neurons.NEW & NOTEWORTHY In strabismus, double vision is prevented by interocular suppression. It has been reported that inhibition of neuronal firing in the primary visual cortex occurs only when stimuli are presented sequentially, rather than simultaneously. However, these recordings in alert macaques raised with exotropia showed, with rare exceptions, little evidence to support the concept that staggered stimulus presentation is more effective at inducing interocular suppression of V1 neurons.
Assuntos
Diplopia/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual Primário/fisiopatologia , Estrabismo/fisiopatologia , Visão Binocular/fisiologia , Animais , Diplopia/etiologia , Modelos Animais de Doenças , Macaca mulatta , Masculino , Estimulação Luminosa , Estrabismo/complicações , Campos Visuais/fisiologiaRESUMO
BACKGROUND: Cancer Associated Macrophage-Like cells (CAMLs) are polynucleated circulating stromal cells found in the bloodstream of numerous solid-tumor malignancies. Variations within CAML size have been associated with poorer progression free survival (PFS) and overall survival (OS) in a variety of cancers; however, no study has evaluated their clinical significance in esophageal cancer (EC). METHODS: To examine this significance, we ran a 2 year prospective pilot study consisting of newly diagnosed stage I-III EC patients (n = 32) receiving chemoradiotherapy (CRT). CAML sizes were sequentially monitored prior to CRT (BL), ~ 2 weeks into treatment (T1), and at the first available sample after the completion of CRT (T2). RESULTS: We found CAMLs in 88% (n = 28/32) of all patient samples throughout the trial, with a sensitivity of 76% (n = 22/29) in pre-treatment screening samples. Improved 2 year PFS and OS was found in patients with CAMLs < 50 µm by the completion of CRT over patients with CAMLs ≥ 50 µm; PFS (HR = 12.0, 95% CI = 2.7-54.1, p = 0.004) and OS (HR = 9.0, 95%CI = 1.9-43.5, p = 0.019). CONCLUSIONS: Tracking CAML sizes throughout CRT as a minimally invasive biomarker may serve as a prognostic tool in mapping EC progression, and further studies are warranted to determine if presence of these cells prior to treatment suggest diagnostic value for at-risk populations.
Assuntos
Neoplasias Esofágicas , Quimiorradioterapia , Neoplasias Esofágicas/tratamento farmacológico , Humanos , Macrófagos , Projetos Piloto , Prognóstico , Estudos ProspectivosRESUMO
In subjects with alternating strabismus, either eye can be used to saccade to visual targets. The brain must calculate the correct vector for each saccade, which will depend on the eye chosen to make it. The superior colliculus, a major midbrain center for saccade generation, was examined to determine whether the maps serving each eye were shifted to compensate for strabismus. Alternating exotropia was induced in two male macaques at age 1 month by sectioning the tendons of the medial recti. Once the animals grew to maturity, they were trained to fixate targets with either eye. Receptive fields were mapped in the superior colliculus using a sparse noise stimulus while the monkeys alternated fixation. For some neurons, sparse noise was presented dichoptically to probe for anomalous retinal correspondence. After recordings, microstimulation was applied to compare sensory and motor maps. The data showed that receptive fields were offset in position by the ocular deviation, but otherwise remained aligned. In one animal, the left eye's coordinates were rotated â¼20° clockwise with respect to those of the right eye. This was explained by a corresponding cyclorotation of the ocular fundi, which produced an A-pattern deviation. Microstimulation drove the eyes accurately to the site of receptive fields, as in normal animals. Single-cell recordings uncovered no evidence for anomalous retinal correspondence. Despite strabismus, neurons remained responsive to stimulation of either eye. Misalignment of the eyes early in life does not alter the organization of topographic maps or disrupt binocular convergence in the superior colliculus.SIGNIFICANCE STATEMENT Patients with strabismus are able to make rapid eye movements, known as saccades, toward visual targets almost as gracefully as subjects with normal binocular alignment. They can even exercise the option of using the right eye or the left eye. It is unknown how the brain measures the degree of ocular misalignment and uses it to compute the appropriate saccade for either eye. The obvious place to investigate is the superior colliculus, a midbrain oculomotor center responsible for the generation of saccades. Here, we report the first experiments in the superior colliculus of awake primates with strabismus using a combination of single-cell recordings and microstimulation to explore the organization of its topographic maps.
Assuntos
Estrabismo/patologia , Colículos Superiores/patologia , Animais , Mapeamento Encefálico , Dominância Ocular , Estimulação Elétrica , Exotropia/patologia , Fixação Ocular , Lateralidade Funcional , Macaca mulatta , Masculino , Neurônios/patologia , Estimulação Luminosa , Retina/patologia , Visão Binocular/fisiologia , Campos VisuaisRESUMO
Circulating tumor cells (CTCs), epithelial-mesenchymal transition (EMT) cells, as well as a number of circulating cancer stromal cells (CStCs) are known to shed into the blood of cancer patients. Individually, and together, these cells provide biological and clinical information about the cancers. Filtration is a method used to isolate all of these cells, while eliminating red and white blood cells from whole peripheral blood. We have previously shown that accurate identification of these cell types is paramount to proper clinical assessment by describing the overlapping phenotypes of CTCs to one such CStC, the cancer-associated macrophage-like cell (CAML). We report that CAMLs possess a number of parallel applications to CTCs but have a broader range of clinical utility, including cancer screening, companion diagnostics, diagnosis, prognosis, monitoring of treatment response, and detection of recurrence. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Assuntos
Biópsia/métodos , Células Sanguíneas/patologia , Neoplasias/diagnóstico , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Contagem de Células/métodos , Separação Celular/métodos , Método Duplo-Cego , Detecção Precoce de Câncer/métodos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , PrognósticoRESUMO
The cerebral cortex is supplied by vascular microlobules, each comprised of a half dozen penetrating arterioles that surround a central draining venule. The surface arterioles that feed the penetrating arterioles are interconnected via an extensively anastomotic plexus. Embolic occlusion of a small surface arteriole rarely produces a local infarct, because collateral blood flow is available through the vascular reticulum. Collateral flow also protects against infarct after occlusion of a single penetrating arteriole. Cortical infarction requires blockage of a major arterial trunk, with arrest of blood flow to a relatively large vascular territory. For striate cortex, the major vessels compromised by emboli are the inferior calcarine and superior calcarine arteries, as well as the distal branches of the middle cerebral artery. Their vascular territories have a fairly consistent relationship with the retinotopic map. Consequently, occlusion by emboli results in stereotypical visual field defects. The organization of the arterial supply to the occipital lobe provides an anatomical explanation for a phenomenon that has long puzzled neuro-ophthalmologists, namely, that of the myriad potential patterns of cortical visual field loss, only a few are encountered commonly from embolic cortical stroke.
Assuntos
Cegueira Cortical/etiologia , Infarto Cerebral/complicações , Circulação Cerebrovascular/fisiologia , Circulação Colateral/fisiologia , Embolia Intracraniana/complicações , Córtex Visual/irrigação sanguínea , Campos Visuais/fisiologia , Arteríolas/diagnóstico por imagem , Cegueira Cortical/diagnóstico , Cegueira Cortical/fisiopatologia , Artérias Cerebrais/diagnóstico por imagem , Infarto Cerebral/diagnóstico , Humanos , Embolia Intracraniana/diagnóstico , Vênulas/diagnóstico por imagemRESUMO
Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process.
Assuntos
Discriminação Psicológica/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Tálamo/fisiologia , Percepção Visual/fisiologia , Animais , Corpos Geniculados/fisiologia , Macaca mulatta , Estimulação LuminosaRESUMO
PURPOSE: To characterize eye movements made by patients with intermittent exotropia when fusion loss occurs spontaneously and to compare them with those induced by covering 1 eye and with strategies used to recover fusion. DESIGN: Prospective study of a patient cohort referred to our laboratory. PARTICIPANTS: Thirteen patients with typical findings of intermittent exotropia who experienced frequent spontaneous loss of fusion. METHODS: The position of each eye was recorded with a video eye tracker under infrared illumination while fixating on a small central near target. MAIN OUTCOME MEASURES: Eye position and peak velocity measured during spontaneous loss of fusion, shutter-induced loss of fusion, and recovery of fusion. RESULTS: In 10 of 13 subjects, the eye movement made after spontaneous loss of fusion was indistinguishable from that induced by covering 1 eye. It reached 90% of full amplitude in a mean of 1.75 seconds. Peak velocity of the deviating eye's movement was highly correlated for spontaneous and shutter-induced events. Peak velocity was also proportional to exotropia amplitude. Recovery of fusion was more rapid than loss of fusion, and often was accompanied by interjection of a disconjugate saccade. CONCLUSIONS: Loss of fusion in intermittent exotropia is not influenced by visual feedback. Excessive divergence tone may be responsible, but breakdown of alignment occurs via a unique, pathological type of eye movement that differs from a normal, physiological divergence eye movement.
Assuntos
Exotropia/fisiopatologia , Movimentos Sacádicos/fisiologia , Visão Binocular/fisiologia , Adolescente , Adulto , Criança , Exotropia/cirurgia , Medições dos Movimentos Oculares , Feminino , Fixação Ocular , Humanos , Masculino , Pessoa de Meia-Idade , Músculos Oculomotores/cirurgia , Procedimentos Cirúrgicos Oftalmológicos , Estudos ProspectivosRESUMO
Tumor-associated macrophages (TAMs) derived from primary tumors are believed to facilitate circulating tumor cell (CTC) seeding of distant metastases, but the mechanisms of these processes are poorly understood. Although many studies have focused on the migration of CTCs, less attention has been given to TAMs that, like CTCs, derive from tumor sites. Using precision microfilters under low-flow conditions, we isolated circulating cancer-associated macrophage-like cells (CAMLs) from the peripheral blood of patients with breast, pancreatic, or prostate cancer. CAMLs, which are not found in healthy individuals, were found to express epithelial, monocytic, and endothelial protein markers and were observed bound to CTCs in circulation. These data support the hypothesis that disseminated TAMs can be used as a biomarker of advanced disease and suggest that they have a participatory role in tumor cell migration.
Assuntos
Biomarcadores/metabolismo , Movimento Celular/fisiologia , Células Gigantes/metabolismo , Macrófagos/metabolismo , Neoplasias/diagnóstico , Biópsia/métodos , Tamanho Celular , Filtração/métodos , Fluoresceína-5-Isotiocianato , Humanos , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Microscopia , Neoplasias/metabolismo , Células Neoplásicas CirculantesRESUMO
BACKGROUND: Enumeration of circulating tumor cells (CTCs) isolated from the peripheral blood of breast cancer patients holds promise as a clinically relevant, minimally invasive diagnostic test. However, CTC utility has been limited as a prognostic indicator of survival by the inability to stratify patients beyond general enumeration. In comparison, histological biopsy examinations remain the standard method for confirming malignancy and grading malignant cells, allowing for cancer identification and then assessing patient cohorts for prognostic and predictive value. Typically, CTC identification relies on immunofluorescent staining assessed as absent/present, which is somewhat subjective and limited in its ability to characterize these cells. In contrast, the physical features used in histological cytology comprise the gold standard method used to identify and preliminarily characterize the cancer cells. Here, we superimpose the methods, cytologically subtyping CTCs labeled with immunohistochemical fluorescence stains to improve their prognostic value in relation to survival. METHODS: In this single-blind prospective pilot study, we tracked 36 patients with late-stage breast cancer over 24 months to compare overall survival between simple CTC enumeration and subtyping mitotic CTCs. A power analysis (1-ß = 0. 9, α = 0.05) determined that a pilot size of 30 patients was sufficient to stratify this patient cohort; 36 in total were enrolled. RESULTS: Our results confirmed that CTC number is a prognostic indicator of patient survival, with a hazard ratio 5.2, p = 0.005 (95 % CI 1.6-16.5). However, by simply subtyping the same population based on CTCs in cytological mitosis, the hazard ratio increased dramatically to 11.1, p < 0.001 (95 % CI 3.1-39.7). CONCLUSIONS: Our data suggest that (1) mitotic CTCs are relativity common in aggressive late-stage breast cancer, (2) mitotic CTCs may significantly correlate with shortened overall survival, and (3) larger and more defined patient cohort studies are clearly called for based on this initial pilot study.
Assuntos
Neoplasias da Mama/patologia , Mitose , Células Neoplásicas Circulantes/patologia , Adulto , Idoso , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos ProspectivosRESUMO
The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.
Assuntos
Mapeamento Encefálico , Movimentos Sacádicos/fisiologia , Estrabismo/patologia , Colículos Superiores/fisiologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Lateralidade Funcional/fisiologia , Macaca mulatta , Masculino , Estrabismo/fisiopatologiaRESUMO
BACKGROUND: Cryopreserved peripheral blood mononuclear cells (PBMCs) are commonly collected in biobanks. However, little data exist regarding the preservation of tumor-associated cells in cryopreserved collections. The objective of this study was to determine the feasibility of using the CellSieve™ microfiltration assay for the isolation of circulating tumor cells (CTCs) and circulating cancer-associated macrophage-like cells (CAMLs) from cryopreserved PBMC samples. METHODS: Blood samples spiked with breast (MCF-7), prostate (PC-3), and renal (786-O) cancer cell lines were used to establish analytical accuracy, efficiency, and reproducibility after cryopreservation. The spiked samples were processed through Ficoll separation, and cryopreservation was followed by thawing and microfiltration. RESULTS: MCF-7 cells were successfully retrieved with recovery efficiencies of 90.5 % without cryopreservation and 87.8 and 89.0 %, respectively, on day 7 and day 66 following cryopreservation. The corresponding recovery efficiencies of PC-3 cells were 83.3 % without cryopreservation and 85.3 and 84.7 %, respectively, after cryopreservation. Recovery efficiencies of 786-O cells were 92.7 % without cryopreservation, and 82.7 and 81.3 %, respectively, after cryopreservation. The recovered cells retained the morphologic characteristics and immunohistochemical markers that had been observed before freezing. The protocols were further validated by quantitation of CAMLs in blood samples from two patients with renal cell carcinoma (RCC). The recovery rates of CTCs and CAMLs from cryopreserved samples were not statistically significant different (P > 0.05) from matched fresh samples. CONCLUSIONS: To our knowledge, this is the first report that CAMLs could be cryopreserved and analyzed after thawing with microfiltration technology. The application of microfiltration technology to cryopreserved samples will enable much greater retrospective study of cancer patients in relation to long-term outcomes.
Assuntos
Criopreservação , Leucócitos Mononucleares/patologia , Neoplasias/sangue , Neoplasias/patologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Secções Congeladas , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Renais/patologia , Macrófagos/patologia , Células Neoplásicas Circulantes/patologia , Estudos RetrospectivosRESUMO
PURPOSE: To determine how formation of an acquired myopic crescent adjacent to the optic disc affects metabolic activity in the primary visual cortex. DESIGN: Laboratory animal study. PARTICIPANTS: Three macaque monkeys. METHODS: The blind spot region in the primary visual cortex was labeled by cytochrome oxidase (CO) histochemistry analysis or [(3)H]proline autoradiography. MAIN OUTCOME MEASURES: Visualization of the representation of the blind spot and myopic peripapillary crescent in the visual cortex. RESULTS: In high myopia, a region resembling the myopic peripapillary crescent was visible in cortical sections processed for CO. In this region, metabolic activity was reduced in ocular dominance columns that normally would be driven by input from retina corresponding to the myopic peripapillary crescent. CONCLUSIONS: The formation of a myopic crescent is accompanied by loss of metabolic activity in the cortex supplied by the affected retina. This observation confirms that retinal tissue is damaged by the development of a myopic crescent, rather than simply translocated in a temporal direction. The cortical defect matches the myopic peripapillary crescent in size and shape, indicating that fill-in of the retinotopic map by healthy, surrounding retina does not occur.
Assuntos
Miopia Degenerativa/patologia , Disco Óptico/patologia , Córtex Visual/patologia , Animais , Modelos Animais de Doenças , Dominância Ocular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Macaca mulatta , Masculino , Miopia Degenerativa/metabolismo , Miopia Degenerativa/fisiopatologia , Tomografia de Coerência Óptica , Córtex Visual/metabolismo , Campos Visuais/fisiologiaRESUMO
BACKGROUND: Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. METHODS: Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. RESULTS: Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. CONCLUSIONS: In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after days of storage. Therefore, we suggest an effective and economical transportation of cancer patient blood samples containing live CTCs can be achieved.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Soluções/farmacologia , Manejo de Espécimes/métodos , Células Sanguíneas/efeitos dos fármacos , Contagem de Células , Feminino , Humanos , Células MCF-7 , Masculino , Células Neoplásicas Circulantes/efeitos dos fármacos , Meios de TransporteRESUMO
The vascular supply to layers and columns was compared in macaque primary visual cortex (V1) by labeling red blood cells via their endogenous peroxidase activity. Alternate sections were processed for cytochrome oxidase to reveal "patches" or "blobs," which anchor the interdigitated column systems of striate cortex. More densely populated cell layers received the most profuse blood supply. In the superficial layers the blood supply was organized into microvascular lobules, consisting of a central venule surrounded by arterioles. Each vessel was identified as an arteriole or venule by matching it with the penetration site where it entered the cortex from a parent arteriole or venule in the pial circulation. Although microvascular lobules and cytochrome oxidase patches had a similar periodicity, they bore no mutual relationship. The size and density of penetrating arterioles and venules did not differ between patches and interpatches. The red blood cell labeling in patches and interpatches was equal. Moreover, patches and interpatches were supplied by an anastomotic pial arteriole system, with no segregation of blood supply to the two compartments. Often a focal constriction was present at the origin of pial arterial branches, indicating that local control of cortical perfusion may be accomplished by vascular sphincters.
Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Visual/irrigação sanguínea , Animais , Células Sanguíneas/metabolismo , Córtex Cerebral/metabolismo , Feminino , Macaca mulatta , Peroxidase/metabolismo , Córtex Visual/metabolismoRESUMO
In strabismus, potentially either eye can inform the brain about the location of a target so that an accurate saccade can be made. Sixteen human subjects with alternating exotropia were tested dichoptically while viewing stimuli on a tangent screen. Each trial began with a fixation cross visible to only one eye. After the subject fixated the cross, a peripheral target visible to only one eye flashed briefly. The subject's task was to look at it. As a rule, the eye to which the target was presented was the eye that acquired the target. However, when stimuli were presented in the far nasal visual field, subjects occasionally performed a "crossover" saccade by placing the other eye on the target. This strategy avoided the need to make a large adducting saccade. In such cases, information about target location was obtained by one eye and used to program a saccade for the other eye, with a corresponding latency increase. In 10/16 subjects, targets were presented on some trials to both eyes. Binocular sensory maps were also compiled to delineate the portions of the visual scene perceived with each eye. These maps were compared with subjects' pattern of eye choice for target acquisition. There was a correspondence between suppression scotoma maps and the eye used to acquire peripheral targets. In other words, targets were fixated by the eye used to perceive them. These studies reveal how patients with alternating strabismus, despite eye misalignment, manage to localize and capture visual targets in their environment.
Assuntos
Comportamento de Escolha/fisiologia , Exotropia/fisiopatologia , Movimentos Sacádicos/fisiologia , Visão Binocular/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Campos Visuais/fisiologia , Adulto JovemRESUMO
To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns.