Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051367

RESUMO

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , Busca de Comunicante/métodos , Surtos de Doenças , Feminino , Genoma Viral , Humanos , Lactente , Recém-Nascido , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , Vacinação , Sequenciamento Completo do Genoma , Adulto Jovem
2.
Cell ; 183(5): 1383-1401.e19, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33159858

RESUMO

Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/genética , Análise de Célula Única , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Efeito Espectador , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Ebolavirus/genética , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferons/genética , Interferons/metabolismo , Macaca mulatta , Macrófagos/metabolismo , Monócitos/metabolismo , Mielopoese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcriptoma/genética
3.
Clin Infect Dis ; 76(5): 850-860, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36268576

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS: All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥45 days after an initial positive test, with both tests between 14 March and 30 December 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS: Among 1569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present and was successful for 14/65 (22%) subjects. Six subjects had genomically supported reinfection, and 8 subjects had genomically supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically supported reinfections. CONCLUSIONS: Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Reinfecção/diagnóstico , Estudos Retrospectivos , SARS-CoV-2/genética , RNA
4.
Open Forum Infect Dis ; 10(3): ofad097, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968958

RESUMO

We report Babesia microti genomic sequences with multiple mutations in the atovaquone-target region of cytochrome b, including a newly identified Y272S mutation, plus 1 mutation of undetermined significance in the azithromycin-associated ribosomal protein L4. The parasite was sequenced from an immunocompromised patient on prophylactic atovaquone for Pneumocystis pneumonia before diagnosis of babesiosis.

5.
Nat Commun ; 14(1): 3866, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391481

RESUMO

Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , RNA Longo não Codificante , Animais , Doença pelo Vírus Ebola/genética , RNA Longo não Codificante/genética , Macaca mulatta , Ebolavirus/genética , Internalização do Vírus
6.
Cell Genom ; 3(12): 100440, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38169842

RESUMO

Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolution method, we found that viral load correlated with increased monocyte presence. Patterns of viral variation between tissues differentiated primary infections from compartmentalized infections, and several variants impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illuminates new features of pathogenesis and establishes resources to study other emerging pathogens.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Febres Hemorrágicas Virais , Animais , Doença pelo Vírus Ebola/patologia , Macaca mulatta , Ebolavirus/genética
7.
medRxiv ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34704102

RESUMO

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA