Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2217422120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888663

RESUMO

Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.


Assuntos
Fatores de Transcrição , Raios Ultravioleta , Humanos , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Ligação Proteica/genética , DNA/metabolismo
2.
Genes Dev ; 29(9): 948-60, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934506

RESUMO

We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Nucleotídeos/genética , Raios Ultravioleta , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas/genética , Dímeros de Pirimidina/genética , Transcrição Gênica/genética
3.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757834

RESUMO

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Laboratórios Clínicos , Projetos Piloto
4.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071702

RESUMO

Cisplatin is a chemotherapy drug that kills cancer cells by damaging their DNA. In human cells, this damage is repaired primarily by nucleotide excision repair. While cisplatin is generally effective, many cancers exhibit initial or acquired resistance to it. Here, we studied cisplatin resistance in a defined cell line system. We conducted a comprehensive genomic characterization of the cisplatin-sensitive A2780 ovarian cancer cell line compared to A2780cis, its resistant derivative. The resistant cells acquired less damage, but had similar repair kinetics. Genome-wide mapping of nucleotide excision repair showed a shift in the resistant cells from global genome towards transcription-coupled repair. By mapping gene expression changes following cisplatin treatment, we identified 56 upregulated genes that have higher basal expression in the resistant cell line, suggesting they are primed for a cisplatin response. More than half of these genes are novel to cisplatin- or damage-response. Six out of seven primed genes tested were upregulated in response to cisplatin in additional cell lines, making them attractive candidates for future investigation. These novel candidates for cisplatin resistance could prove to be important prognostic markers or targets for tailored combined therapy in the future.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Genoma/efeitos dos fármacos , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(26): 6758-6763, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607063

RESUMO

Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.


Assuntos
Mapeamento Cromossômico , Adutos de DNA/genética , Dano ao DNA , Genoma Humano , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Humanos
6.
Proc Natl Acad Sci U S A ; 114(26): 6752-6757, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607059

RESUMO

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, is the major cause of lung cancer. BaP forms covalent DNA adducts after metabolic activation and induces mutations. We have developed a method for capturing oligonucleotides carrying bulky base adducts, including UV-induced cyclobutane pyrimidine dimers (CPDs) and BaP diol epoxide-deoxyguanosine (BPDE-dG), which are removed from the genome by nucleotide excision repair. The isolated oligonucleotides are ligated to adaptors, and after damage-specific immunoprecipitation, the adaptor-ligated oligonucleotides are converted to dsDNA with an appropriate translesion DNA synthesis (TLS) polymerase, followed by PCR amplification and next-generation sequencing (NGS) to generate genome-wide repair maps. We have termed this method translesion excision repair-sequencing (tXR-seq). In contrast to our previously described XR-seq method, tXR-seq does not depend on repair/removal of the damage in the excised oligonucleotides, and thus it is applicable to essentially all DNA damages processed by nucleotide excision repair. Here we present the excision repair maps for CPDs and BPDE-dG adducts generated by tXR-Seq for the human genome. In addition, we report the sequence specificity of BPDE-dG excision repair using tXR-seq.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Fumar Cigarros/genética , Reparo do DNA , Genoma Humano , Estudo de Associação Genômica Ampla , Linhagem Celular , Fumar Cigarros/efeitos adversos , Humanos
7.
Proc Natl Acad Sci U S A ; 113(15): E2124-33, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27036006

RESUMO

We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as "heterochromatic" and "repressed" was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, late-repaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.


Assuntos
Cromatina/genética , Reparo do DNA/genética , Genoma Humano/genética , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Humanos , Cinética , Melanoma/genética , Mutagênese/genética , Análise de Sequência de DNA/métodos
8.
Proc Natl Acad Sci U S A ; 113(41): 11507-11512, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688757

RESUMO

Cisplatin is a major anticancer drug that kills cancer cells by damaging their DNA. Cancer cells cope with the drug by removal of the damages with nucleotide excision repair. We have developed methods to measure cisplatin adduct formation and its repair at single-nucleotide resolution. "Damage-seq" relies on the replication-blocking properties of the bulky base lesions to precisely map their location. "XR-seq" independently maps the removal of these damages by capturing and sequencing the excised oligomer released during repair. The damage and repair maps we generated reveal that damage distribution is essentially uniform and is dictated mostly by the underlying sequence. In contrast, cisplatin repair is heterogeneous in the genome and is affected by multiple factors including transcription and chromatin states. Thus, the overall effect of damages in the genome is primarily driven not by damage formation but by the repair efficiency. The combination of the Damage-seq and XR-seq methods has the potential for developing novel cancer therapeutic strategies.


Assuntos
Cisplatino/farmacologia , Dano ao DNA/genética , Genoma Humano , Nucleotídeos/genética , Sequência de Bases , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Humanos , Nucleossomos/metabolismo
9.
J Biol Chem ; 292(38): 15588-15597, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28798238

RESUMO

Nucleotide excision repair is a major DNA repair mechanism in all cellular organisms. In this repair system, the DNA damage is removed by concerted dual incisions bracketing the damage and at a precise distance from the damage. Here, we review the basic mechanisms of excision repair in Escherichia coli and humans and the recent genome-wide mapping of DNA damage and repair in these organisms at single-nucleotide resolution.


Assuntos
Mapeamento Cromossômico/métodos , Reparo do DNA/genética , Escherichia coli/genética , Dano ao DNA , Humanos
10.
J Biol Chem ; 289(8): 5013-24, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24385426

RESUMO

The mammalian circadian clock is a molecular oscillator composed of a feedback loop that involves transcriptional activators CLOCK and BMAL1, and repressors Cryptochrome (CRY) and Period (PER). Here we show that a direct CLOCK·BMAL1 target gene, Gm129, is a novel regulator of the feedback loop. ChIP analysis revealed that the CLOCK·BMAL1·CRY1 complex strongly occupies the promoter region of Gm129. Both mRNA and protein levels of GM129 exhibit high amplitude circadian oscillations in mouse liver, and Gm129 gene encodes a nuclear-localized protein that directly interacts with BMAL1 and represses CLOCK·BMAL1 activity. In vitro and in vivo protein-DNA interaction results demonstrate that, like CRY1, GM129 functions as a repressor by binding to the CLOCK·BMAL1 complex on DNA. Although Gm129(-/-) or Cry1(-/-) Gm129(-/-) mice retain a robust circadian rhythm, the peaks of Nr1d1 and Dbp mRNAs in liver exhibit a significant phase delay compared with control. Our results suggest that, in addition to CRYs and PERs, the GM129 protein contributes to the transcriptional feedback loop by modulating CLOCK·BMAL1 activity as a transcriptional repressor.


Assuntos
Relógios Circadianos/genética , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Proteínas CLOCK/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Criptocromos/metabolismo , DNA/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
11.
Cell Genom ; 4(8): 100635, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146802

RESUMO

The mutational landscape of an individual's cancer can inform on its molecular state and be used as prognostic and therapeutic markers. The study by Barbour et al.1 analyzes mutational patterns in bladder cancer samples to uncover new biological insights into the ERCC2 gene function and develop new predictive prognostic tools.


Assuntos
Mutação , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Genômica/métodos , Proteína Grupo D do Xeroderma Pigmentoso/genética , Neoplasias/genética , Neoplasias/terapia , Biomarcadores Tumorais/genética
12.
J Mol Biol ; 436(6): 168450, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246411

RESUMO

Helix-distorting DNA damages block RNA and DNA polymerase, compromising cell function and fate. In human cells, these damages are removed primarily by nucleotide excision repair (NER). Here, we describe damage-sensing PCR (dsPCR), a PCR-based method for the detection of these DNA damages. Exposure to DNA damaging agents results in lower PCR signal in comparison to non-damaged DNA, and repair is measured as the restoration of PCR signal over time. We show that the method successfully detects damages induced by ultraviolet (UV) radiation, by the carcinogenic component of cigarette smoke benzo[a]pyrene diol epoxide (BPDE) and by the chemotherapeutic drug cisplatin. Damage removal measured by dsPCR in a heterochromatic region is less efficient than in a transcribed and accessible region. Furthermore, lower repair is measured in repair-deficient knock-out cells. This straight-forward method could be applied by non-DNA repair experts to study the involvement of their gene-of-interest in repair. Furthermore, this method is fully amenable for high-throughput screening of DNA repair activity.


Assuntos
Adutos de DNA , Dano ao DNA , Reparo do DNA , Humanos , Carcinógenos/toxicidade , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Adutos de DNA/análise , Reparo do DNA/genética , Reação em Cadeia da Polimerase/métodos
13.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38167611

RESUMO

Bulky DNA damages block transcription and compromise genome integrity and function. The cellular response to these damages includes global transcription shutdown. Still, active transcription is necessary for transcription-coupled repair and for induction of damage-response genes. To uncover common features of a general bulky DNA damage response, and to identify response-related transcripts that are expressed despite damage, we performed a systematic RNA-seq study comparing the transcriptional response to three independent damage-inducing agents: UV, the chemotherapy cisplatin, and benzo[a]pyrene, a component of cigarette smoke. Reduction in gene expression after damage was associated with higher damage rates, longer gene length, and low GC content. We identified genes with relatively higher expression after all three damage treatments, including NR4A2, a potential novel damage-response transcription factor. Up-regulated genes exhibit higher exon content that is associated with preferential repair, which could enable rapid damage removal and transcription restoration. The attenuated response to BPDE highlights that not all bulky damages elicit the same response. These findings frame gene architecture as a major determinant of the transcriptional response that is hardwired into the human genome.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Dano ao DNA/genética , Benzo(a)pireno/farmacologia , Benzo(a)pireno/metabolismo , Regulação da Expressão Gênica/genética , Genoma Humano/genética
14.
Nat Commun ; 15(1): 7089, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154022

RESUMO

Transcription-blocking lesions (TBLs) stall elongating RNA polymerase II (Pol II), which then initiates transcription-coupled repair (TCR) to remove TBLs and allow transcription recovery. In the absence of TCR, eviction of lesion-stalled Pol II is required for alternative pathways to address the damage, but the mechanism is unclear. Using Protein-Associated DNA Damage Sequencing (PADD-seq), this study reveals that the p97-proteasome pathway can evict lesion-stalled Pol II independently of repair. Both TCR and repair-independent eviction require CSA and ubiquitination. However, p97 is dispensable for TCR and Pol II eviction in TCR-proficient cells, highlighting repair's prioritization over repair-independent eviction. Moreover, ubiquitination of RPB1-K1268 is important for both pathways, with USP7's deubiquitinase activity promoting TCR without abolishing repair-independent Pol II release. In summary, this study elucidates the fate of lesion-stalled Pol II, and may shed light on the molecular basis of genetic diseases caused by the defects of TCR genes.


Assuntos
Dano ao DNA , Reparo do DNA , RNA Polimerase II , Transcrição Gênica , Ubiquitinação , RNA Polimerase II/metabolismo , Humanos , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Reparo por Excisão
15.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600235

RESUMO

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Assuntos
Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Adutos de DNA/metabolismo , Adutos de DNA/genética , Dano ao DNA , DNA Helicases/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Reparo por Excisão , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Receptores de Interleucina-17 , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição , Transcrição Gênica , Ubiquitinação , Raios Ultravioleta
16.
EMBO J ; 28(4): 383-93, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19153606

RESUMO

DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , DNA/metabolismo , Animais , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/química , Dimerização , Epistasia Genética , Humanos , Cinética , Camundongos , Mutagênese , Dímeros de Pirimidina/química , RNA Interferente Pequeno/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
17.
DNA Repair (Amst) ; 130: 103549, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37566959

RESUMO

DNA damages compromise cell function and fate. Cells of all organisms activate a global DNA damage response that includes a signaling stress response, activation of checkpoints, and recruitment of repair enzymes. Especially deleterious are bulky, helix-distorting damages that block transcription and replication. Due to their miscoding nature, these damages lead to mutations and cancer. In human cells, bulky DNA damages are repaired by nucleotide excision repair (NER). To date, the basic mechanism of NER in naked DNA is well defined. Still, there is a fundamental gap in our understanding of how repair is orchestrated despite the packaging of DNA in chromatin, and how it is coordinated with active transcription and replication. The last decade has brought forth huge advances in our ability to detect and assay bulky DNA damages and their repair at single nucleotide resolution across the human genome. Here we review recent findings on the effect of chromatin and DNA-binding proteins on the formation of bulky DNA damages, and novel insights on NER, provided by the recent application of genomic methods.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , DNA/metabolismo , Cromatina/genética , Genômica
18.
Comput Struct Biotechnol J ; 21: 5531-5537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034403

RESUMO

The Cancer Genome Atlas (TCGA) and analogous projects have yielded invaluable tumor-associated genomic data. Despite several web-based platforms designed to enhance accessibility, certain analyses require prior bioinformatic expertise. To address this need, we developed Gene ENrichment Identifier (GENI, https://www.shaullab.com/geni), which is designed to promptly compute correlations for genes of interest against the entire transcriptome and rank them against well-established biological gene sets. Additionally, it generates comprehensive tables containing genes of interest and their corresponding correlation coefficients, presented in publication-quality graphs. Furthermore, GENI has the capability to analyze multiple genes simultaneously within a given gene set, elucidating their significance within a specific biological context. Overall, GENI's user-friendly interface simplifies the biological interpretation and analysis of cancer patient-associated data, advancing the understanding of cancer biology and accelerating scientific discoveries.

19.
Microbiol Spectr ; 10(4): e0073622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35758686

RESUMO

COVID-19 is caused by SARS-CoV-2, several virulent variants of which have emerged since 2019. More than 529 million people have been infected, and at least 6 million have died. Our aim was to develop a fast, accurate, low-cost method for detecting and identifying newly emerging variants of concern (VOCs) that could pose a global threat. The 341-bp DNA sequence of a specific region of the SARS-CoV-2's spike protein was amplified by a one-step PCR on RNA samples from 46 patients. The product was sequenced using next-generation sequencing (NGS). DNA sequences from seven genomes, the original Wuhan isolate and six different representative variants obtained from the GISAID website, were used as references. Complete whole-genome sequences from local isolates were also obtained from the GISAID website, and their RNA was used for comparison. We used an amplicon-based NGS method (termed VOC-NGS) for genotyping and successfully identified all 46 samples. Fifteen (32.6%) were like the original isolate. Twenty-seven were VOCs: nine (19.5%) Alpha, eight (19%) Delta, six (14%) Beta, and four (8.7%) Omicron. Two were variants of interest (VOI): one (2%) Kappa and one (2%) Zeta. Two samples were mixtures of two variants, one of Alpha and Beta and one of Alpha and Delta. The Spearman correlation between whole-genome sequencing (WGS) and VOC-NGS was significant (P < 0.001) with perfect agreement (Kappa = 0.916) for 36/38 (94.7%) samples with VOC-NGS detecting all the known VOCs. Genotyping by VOC-NGS enables rapid screening of high-throughput clinical samples that includes the identification of VOCs and mixtures of variants, at lower cost than WGS. IMPORTANCE The manuscript described SARS-Cov-2 genotyping by VOC-NGS, which presents an ideal balance of accuracy, rapidity, and cost for detecting and globally tracking VOCs and some VOI of SARS-CoV-2. A large number of clinical samples can be tested together. Rapid introduction of new mutations at a specific site of the spike protein necessitates efficient strain detection and identification to enable choice of treatment and the application of vaccination, as well as planning public health policy.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , RNA , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
20.
Viruses ; 14(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891570

RESUMO

SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, raising the question of whether early variant-specific interactions within the mucosal surfaces of the respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate immune response to Omicron compared to Delta and earlier SARS-CoV-2 variants of concern (VOC). We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC, whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC-a difference, which was most striking in the lung tissues, where the innate immune response to all other SARS-CoV-2 VOC was blunted. Notably, blocking the innate immune signaling restored Omicron replication in the lung tissues. Our data provide new insights to the reduced lung involvement and clinical severity of Omicron.


Assuntos
COVID-19 , Interferons , Pulmão , COVID-19/imunologia , Humanos , Interferons/imunologia , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA