RESUMO
Electronic structure engineering on electrode materials could bring in a new mechanism to achieve high energy and high power densities in sodium ion batteries. Herein, we design and create Co vacancies at the interface of atomically thin CoSe2 /graphene heterostructure and obtain Co1-x Se2 /graphene heterostructure electrode materials that facilitate significant Na+ intercalation pseudocapacitance. Density functional theory (DFT) calculation suggests that the Na+ adsorption energy is dramatically increased, and the Na+ diffusion barrier is remarkably reduced due to the introduction of Co vacancy. The optimized electrode delivers a superior capacity of 673.6â mAh g-1 at 0.1 C, excellent rate capability of 576.5â mAh g-1 at 2.0 C and ultra-long life up to 2000 cycles. Kinetics analysis indicates that the enhanced Na+ storage is mainly attributed to the intercalation pseudocapacitance induced by Co vacancies. This work suggests that the creation of cation vacancy could bestow heterostructured electrode materials with pseudocapacitive Na+ intercalation for high-capacity and high-rate energy storage.
RESUMO
Graphene is commonly used to improve the electrochemical performance of electrode materials in rechargeable batteries by forming graphene-based heterostructures. Two-dimensional graphitic carbon nitride (C3N4) is an analogue of graphene, and it is often used to form 1D/2D and 2D/2D C3N4/graphene heterostructures. However, a theoretical understanding of the heterointerface in these heterostructures and how this affects their electrochemical performance is lacking. In this work we study the heterointerface of 1D/2D and 2D/2D C3N4/graphene heterostructures and how the different dimensions influence the lithium ion battery performance of the heterostructure. Our density functional theory (DFT) study showed that the common problem of C-N bond breakage experienced in 2D/2D C3N4/graphene heterostructure does not occur in the 1D/2D heterostructure. Furthermore, the 1D/2D heterostructure showed superior conductivity in comparison to that of the 2D/2D heterostructure of C3N4/graphene. The 1D/2D C3N4/graphene heterostructure also recorded a high theoretical capacity and rapid charge transfer. These results suggest that the properties of a heterostructure are influenced by the dimension of materials at the interface. These discoveries on the relationship between material dimension in heterostructure electrodes and their electrochemical performance will motivate the design of advanced electrode materials for rechargeable batteries.
RESUMO
Carbon nitrides (including CN, C2N, C3N, C3N4, C4N, and C5N) are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures, morphologies, and electronic configurations. In this review, we provide a comprehensive review on these materials properties, theoretical advantages, the synthesis and modification strategies of different carbon nitride-based materials (CNBMs) and their application in existing and emerging rechargeable battery systems, such as lithium-ion batteries, sodium and potassium-ion batteries, lithium sulfur batteries, lithium oxygen batteries, lithium metal batteries, zinc-ion batteries, and solid-state batteries. The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage, i.e., facilitate the application of first-principle studies and density functional theory for electrode material design, synthesis, and characterization of different CNBMs for the aforementioned rechargeable batteries. At last, we conclude with the challenges, and prospects of CNBMs, and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.
RESUMO
Redox-active organic cathode materials have drawn growing attention because of the broad availability of raw materials, eco-friendliness, scalable production, and diverse structural flexibility. However, organic materials commonly suffer from fragile stability in organic solvents, poor electrochemical stability in charge/discharge processes, and insufficient electrical conductivity. To address these issues, using Cu(II) salt and benzenehexathiolate (BHT) as the precursors, we synthesized a robust and redox-active 2D metal-organic framework (MOF), [Cu3(C6S6)]n, namely, Cu-BHT. The Cu-BHT MOFs have a highly conjugated structure, affording a high electronic conductivity of 231 S cm-1, which could further be increased upon lithiation in lithium-ion battery (LIB) applications. A reversible four-electron reaction reveals the Li storage mechanism of the Cu-BHT for a theoretical capacity of 236 mAh g-1. The as-prepared Cu-BHT cathode delivers an excellent reversible capacity of 175 mAh g-1 with ultralow capacity deterioration (0.048% per cycle) upon 500 cycles at a high current density of 300 mA g-1. Therefore, we believe this work would provide a practical strategy for the development of high-power energy storage materials.
RESUMO
The water dissociation step (H2O + M + e- â M - Hads + OH-) is a crucial one toward achieving high-performance hydrogen evolution reaction (HER). The application of electronic conducting polymers (ECPs), such as polypyrrole (PPy), as the electrocatalyst for HER is rarely reported because of their poor adsorption energy per water molecule, which hinders the Volmer step. Herein, we strongly enrich PPy hollow microspheres (PPy-HMS) with attractive HER activity by enhancing their hydrophilic properties through hybridization with good water affinity SiO2. The as-prepared PPy-coated SiO2 (PPy@SiO2-HMS) achieves a current density of 10 mA cm-2 at -123 mV, which is lower than that of pristine PPy-HMS (-192 mV). Raman and X-ray photospectroscopy analyses reveal that the enhanced HER catalytic capability can be attributed to the strong electronic couplings between PPy and SiO2, and this improves the adsorption energy per water molecule and in turn accelerates the water dissociation kinetics on PPy. This work highlights the potential application of low-cost ECPs as promising electrocatalysts for water electrolysis.
RESUMO
Cobalt oxide (Co3O4) delivers a poor capacity when applied in large-sized alkali metal-ion systems such as potassium-ion batteries (KIBs). Our density functional theory calculation suggests that this is due to poor conductivity, high diffusion barrier, and weak potassium interaction. N-doped carbon can effectively attract potassium ions, improve conductivity, and reduce diffusion barriers. Through interface engineering, the properties of Co3O4 can be tuned via composite design. Herein, a Co3O4@N-doped carbon composite was designed as an advanced anode for KIBs. Due to the interfacial design of the composite, K+ were effectively transported through the Co3O4@N-C composite via multiple ionic pathways. The structural design of the composite facilitated increased Co3O4 spacing, a nitrogen-doped carbon layer reduced K-ion diffusion barrier, and improved conductivity and protected the electrode from damage. Based on the entire composite, a superior capacity of 448.7 mAh/g was delivered at 50 mA/g after 40 cycles, and moreover, 213 mAh/g was retained after 740 cycles when cycled at 500 mA/g. This performance exceeds that of most metal-oxide-based KIB anodes reported in literature.