Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 62(5): 601-613, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31081586

RESUMO

Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana (Arabidopsis) arginine decarboxylase 1 (ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts Nδ -acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize Nδ -acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carboxiliases/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboxiliases/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Putrescina/análogos & derivados , Putrescina/metabolismo
2.
Plant Cell ; 23(9): 3303-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21917546

RESUMO

Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid N(δ)-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce N(δ)-acetylornithine. MeJA-induced N(δ)-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and N(δ)-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of N(δ)-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by N(δ)-acetylornithine addition.


Assuntos
Acetatos/farmacologia , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Ornitina/análogos & derivados , Oxilipinas/farmacologia , Acetilação , Animais , Afídeos/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Metaboloma , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Ornitina/biossíntese , Doenças das Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas syringae/patogenicidade
3.
Pest Manag Sci ; 75(8): 2086-2094, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30828945

RESUMO

BACKGROUND: Effective management of weedy species in agricultural fields is essential for maintaining favorable growing conditions and crop yields. The introduction of genetically modified crops containing herbicide tolerance traits has been a successful additional tool available to farmers to better control weeds. However, weed resistance challenges present a need for additional herbicide tolerance trait options. RESULTS: To help meet this challenge, a new trait that provides tolerance to an aryloxyphenoxypropionate (FOP) herbicide and members of the synthetic auxin herbicide family, such as 2,4-dichlorophenoxyacetic acid (2,4-D), was developed. Development of this herbicide tolerance trait employed an enzyme engineered with robust and specific enzymatic activity for these two herbicide families. This engineering effort utilized a microbial-sourced dioxygenase scaffold to generate variants with improved enzymatic parameters. Additional optimization to enhance in-plant stability of the enzyme enabled an efficacious trait that can withstand the higher temperature conditions often found in field environments. CONCLUSION: Optimized herbicide tolerance enzyme variants with enhanced enzymatic and temperature stability parameters enabled robust herbicide tolerance for two herbicide families in transgenic maize and soybeans. This herbicide tolerance trait for FOP and synthetic auxin herbicides such as 2,4-D could be useful in weed management systems, providing additional tools for farmers to control weeds. © 2019 Society of Chemical Industry.


Assuntos
Glycine max/enzimologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/enzimologia , Zea mays/enzimologia , Engenharia Genética , Ácidos Indolacéticos/farmacologia , Plantas Geneticamente Modificadas/genética , Propionatos/farmacologia , Glycine max/genética , Zea mays/genética
4.
Phytochemistry ; 69(4): 889-93, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18078965

RESUMO

Investigation of phytoalexin production using abiotic elicitation showed that the phytoalexin rapalexin A was produced by both Thellungiella halophila and Arabidopsis thaliana, but while A. thaliana produced camalexin, T. halophila produced wasalexins A and B and methoxybrassenin B. Considering that the genome of T. halophila is being sequenced currently and that the wasalexin pathway present in T. halophila is expected to involve a number of genes also present in Brassica species, our discovery should facilitate the isolation of genes involved in biosynthetic pathways of phytoalexins of the most economically important crucifer species.


Assuntos
Arabidopsis/metabolismo , Brassicaceae/metabolismo , Indóis/metabolismo , Isotiocianatos/metabolismo , Terpenos/metabolismo , Tiazóis/metabolismo , Arabidopsis/genética , Brassicaceae/genética , Genoma de Planta/genética , Genoma de Planta/fisiologia , Indóis/química , Isotiocianatos/química , Estrutura Molecular , Sesquiterpenos , Sulfetos/química , Sulfetos/metabolismo , Terpenos/química , Tiazóis/química , Fitoalexinas
5.
Phytochemistry ; 67(14): 1503-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16806330

RESUMO

Our continuous search for phytoalexins from crucifers led us to examine phytoalexin production in florets of cauliflower (Brassica oleracea var. botrytis) under abiotic (UV light) elicitation. Four known (isalexin, S-(-)-spirobrassinin, 1-methoxybrassitin, brassicanal C) and three new (caulilexins A-C) phytoalexins were isolated. The syntheses and antifungal activity of caulilexins A-C against the economically important pathogenic fungi Leptosphaeria maculans, Rhizoctonia solani and Sclerotinia sclerotiorum, and the first synthesis of brassicanal C are reported.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Brassica/química , Terpenos/química , Terpenos/farmacologia , Antifúngicos/síntese química , Antifúngicos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Indóis/síntese química , Indóis/química , Indóis/isolamento & purificação , Indóis/farmacologia , Leptospira/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizoctonia/efeitos dos fármacos , Sesquiterpenos , Terpenos/síntese química , Terpenos/isolamento & purificação , Fitoalexinas
6.
J Chromatogr A ; 1133(1-2): 172-83, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16949596

RESUMO

We have analyzed 23 crucifer phytoalexins (e.g. brassinin, dioxibrassinin, cyclobrassinin, brassicanals A and C) by HPLC with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) using both negative and positive ion modes. Positive ion mode ESI-MS appeared more sensitive than negative ion mode ESI-MS in detecting this group of compounds. A new HPLC separation method, new LC-MS and LC-MS(2) data and proposed fragmentation pathways, LC retention times, and UV spectra for selected compounds are reported.


Assuntos
Brassicaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Terpenos/análise , Estrutura Molecular , Reprodutibilidade dos Testes , Sesquiterpenos , Terpenos/química , Fitoalexinas
7.
Phytochemistry ; 70(17-18): 2010-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19818973

RESUMO

The production of phytoalexins in Thellungiella halophila exposed to UV-radiation and NaCl was investigated over a period of 8 days. UV-radiation induced substantially larger quantities of wasalexins A and B than NaCl irrigation or CuCl(2) spray. Isolation of two metabolites and their chemical structure determination using X-ray diffraction analysis provided the phytoalexins biswasalexins A1 and A2, that resulted from head-to-tail photodimerization of wasalexin A. The production of biswasalexins A1 and A2 in stressed T. halophila, as well as their chemical synthesis and antifungal activity are reported. Biswasalexins A1 and A2 (60 nmol/g and 15 nmol/g fresh wt, respectively, 2 days after UV elicitation) are cruciferous phytoalexins whose formation in planta appears to result from a photochemical reaction, which might protect the plant from fungal attack and UV-radiation.


Assuntos
Adaptação Fisiológica/fisiologia , Brassicaceae/metabolismo , Indóis/metabolismo , Estresse Fisiológico , Raios Ultravioleta , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Brassicaceae/efeitos da radiação , Cobre , Dimerização , Fungos/efeitos dos fármacos , Indóis/química , Estrutura Molecular , Processos Fotoquímicos , Proteínas de Plantas , Tolerância ao Sal , Sesquiterpenos , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacologia , Fitoalexinas
8.
Phytochemistry ; 70(9): 1129-1138, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19560792

RESUMO

Although several biosynthetic intermediates in pathways to cruciferous phytoalexins and phytoanticipins are common, questions regarding the introduction of substituents at N-1 of the indole moiety remain unanswered. Toward this end, we investigated the potential incorporations of several perdeuterated d- and l-1'-methoxytryptophans, d- and l-tryptophans and other indol-3-yl derivatives into pertinent phytoalexins and phytoanticipins (indolyl glucosinolates) produced in rutabaga (Brassica napus L. ssp. rapifera) roots. In addition, we probed the potential transformations of quasi-natural compounds, these being analogues of biosynthetic intermediates that might lead to "quasi-natural" products (products similar to natural products but not produced under natural conditions). No detectable incorporations of deuterium labeled 1'-methoxytryptophans into phytoalexins or glucobrassicin were detected. l-tryptophan was incorporated in a higher percentage than d-tryptophan into both phytoalexins and phytoanticipins. However, in the case of the phytoalexin rapalexin A, both d- and l-tryptophan were incorporated to the same extent. Furthermore, the transformations of both 1'-methylindolyl-3'-acetaldoxime and 1'-methylindolyl-3'-acetothiohydroxamic acid (quasi-natural products) into 1'-methylglucobrassicin but not into phytoalexins suggested that post-aldoxime enzymes in the biosynthetic pathway of indolyl glucosinolates are not substrate-specific. Hence, it would appear that the 1-methoxy substituent of the indole moiety is introduced downstream from tryptophan and that the post-aldoxime enzymes of the glucosinolate pathway are different from the enzymes of the phytoalexin pathway. A higher substrate specificity of some enzymes of the phytoalexin pathway might explain the relatively lower structural diversity among phytoalexins than among glucosinolates.


Assuntos
Produtos Biológicos/metabolismo , Brassica napus/metabolismo , Indóis/metabolismo , Terpenos/metabolismo , Triptofano/análogos & derivados , Triptofano/metabolismo , Brassica napus/química , Deutério , Glucosídeos/química , Glucosídeos/metabolismo , Indóis/química , Estrutura Molecular , Raízes de Plantas/metabolismo , Tubérculos/química , Tubérculos/metabolismo , Sesquiterpenos , Terpenos/química , Triptofano/química , Fitoalexinas
9.
Science ; 323(5910): 95-101, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19095898

RESUMO

The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Flagelina/imunologia , Glucosinolatos/metabolismo , Imunidade Inata , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/biossíntese , Glicosídeo Hidrolases/metabolismo , Hidrólise , Indóis/metabolismo , Indóis/farmacologia , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Fragmentos de Peptídeos/imunologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA