RESUMO
The two species of the Old World Camelini tribe, dromedary and Bactrian camels, show superior adaptability to the different environmental conditions they populate, e.g. desert, mountains and coastal areas, which might be associated with adaptive variations on their mitochondrial DNA. Here, we investigate signatures of natural selection in the 13-mitochondrial protein-coding genes of different dromedary camel populations from the Arabian Peninsula, Africa and southwest Asia. The full mitogenome sequences of 42 dromedaries, 38 domestic Bactrian, 29 wild Bactrian camels and 31 samples representing the New World Lamini tribe reveal species-wise genetic distinction among Camelidae family species, with no evidence of geographic distinction among dromedary camels. We observe gene-wide signals of adaptive divergence between the Old World and New World camels, with evidence of purifying selection among Old World camel species. Upon comparing the different Camelidae tribes, 27 amino acid substitutions across ten mtDNA protein-coding genes were found to be under positive selection, in which, 24 codons were defined to be under positive adaptive divergence between Old World and New World camels. Seven codons belonging to three genes demonstrated positive selection in dromedary lineage. A total of 89 codons were found to be under positive selection in Camelidae family based on investigating the impact of amino acid replacement on the physiochemical properties of proteins, including equilibrium constant and surrounding hydrophobicity. These mtDNA variants under positive selection in the Camelidae family might be associated with their adaptation to their contrasting environments.
Assuntos
Camelus , DNA Mitocondrial , Animais , Camelus/genética , DNA Mitocondrial/genética , DNA Mitocondrial/química , Mitocôndrias/genéticaRESUMO
Although classified as an African taurine breed, the genomes of Sheko cattle are an admixture of Asian zebu and African taurine ancestries. They populate the humid Bench Maji zone in Sheko and Bench districts in the south-western part of Ethiopia and are considered as a trypanotolerant breed with high potential for dairy production. Here, we investigate the genome of Sheko cattle for candidate signatures of adaptive introgression and positive selection using medium density genome-wide SNP data. Following locus-ancestry deviation analysis, 15 and 72 genome regions show substantial excess and deficiency in Asian zebu ancestry, respectively. Nine and 23 regions show candidate signatures of positive selection following extended haplotype homozygosity (EHH)-based analyses (iHS and Rsb), respectively. The results support natural selection before admixture for one iHS, one Rsb and three zebu ancestry-deficient regions. Genes and/or QTL associated with bovine immunity, fertility, heat tolerance, trypanotolerance and lactation are present within candidate selected regions. The identification of candidate regions under selection in Sheko cattle warrants further investigation of a larger sample size using full genome sequence data to better characterise the underlying haplotypes. The results can then support informative genomic breeding programmes to sustainably enhance livestock productivity in East African trypanosomosis infested areas.