Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2322751121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652750

RESUMO

Organ-specific gene expression datasets that include hundreds to thousands of experiments allow the reconstruction of organ-level gene regulatory networks (GRNs). However, creating such datasets is greatly hampered by the requirements of extensive and tedious manual curation. Here, we trained a supervised classification model that can accurately classify the organ-of-origin for a plant transcriptome. This K-Nearest Neighbor-based multiclass classifier was used to create organ-specific gene expression datasets for the leaf, root, shoot, flower, and seed in Arabidopsis thaliana. A GRN inference approach was used to determine the: i. influential transcription factors (TFs) in each organ and, ii. most influential TFs for specific biological processes in that organ. These genome-wide, organ-delimited GRNs (OD-GRNs), recalled many known regulators of organ development and processes operating in those organs. Importantly, many previously unknown TF regulators were uncovered as potential regulators of these processes. As a proof-of-concept, we focused on experimentally validating the predicted TF regulators of lipid biosynthesis in seeds, an important food and biofuel trait. Of the top 20 predicted TFs, eight are known regulators of seed oil content, e.g., WRI1, LEC1, FUS3. Importantly, we validated our prediction of MybS2, TGA4, SPL12, AGL18, and DiV2 as regulators of seed lipid biosynthesis. We elucidated the molecular mechanism of MybS2 and show that it induces purple acid phosphatase family genes and lipid synthesis genes to enhance seed lipid content. This general approach has the potential to be extended to any species with sufficiently large gene expression datasets to find unique regulators of any trait-of-interest.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especificidade de Órgãos/genética , Transcriptoma/genética , Sementes/genética , Sementes/metabolismo , Perfilação da Expressão Gênica/métodos
2.
Hortic Res ; 10(8): uhad137, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564269

RESUMO

Improving chilling tolerance in cold-sensitive crops, e.g. tomato, requires knowledge of the early molecular response to low temperature in these under-studied species. To elucidate early responding processes and regulators, we captured the transcriptional response at 30 minutes and 3 hours in the shoots and at 3 hours in the roots of tomato post-chilling from 24°C to 4°C. We used a pre-treatment control and a concurrent ambient temperature control to reveal that majority of the differential expression between cold and ambient conditions is due to severely compressed oscillation of a large set of diurnally regulated genes in both the shoots and roots. This compression happens within 30 minutes of chilling, lasts for the duration of cold treatment, and is relieved within 3 hours of return to ambient temperatures. Our study also shows that the canonical ICE1/CAMTA-to-CBF cold response pathway is active in the shoots, but not in the roots. Chilling stress induces synthesis of known cryoprotectants (trehalose and polyamines), in a CBF-independent manner, and induction of multiple genes encoding proteins of photosystems I and II. This study provides nuanced insights into the organ-specific response in a chilling sensitive plant, as well as the genes influenced by an interaction of chilling response and the circadian clock.

3.
Sci Rep ; 6: 28502, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328708

RESUMO

ZmMYB31 and ZmMYB42 are R2R3-MYB transcription factors implicated in the regulation of phenylpropanoid genes in maize. Here, we tested the hypothesis that the regulatory function of MYB31 and MYB42 is conserved in other monocots, specifically in sorghum and rice. We demonstrate that syntelogs of MYB31 and MYB42 do bind to phenylpropanoid genes that function in all stages of the pathway and in different tissues along the developmental gradient of seedling leaves. We found that caffeic acid O-methyltransferase (COMT1) is a common target of MYB31 and MYB42 in the mature leaf tissues of maize, sorghum and rice, as evidenced by Chromatin immunoprecipitation (ChIP) experiments. In contrast, 4-coumarate-CoA ligase (4CL2), ferulate-5-hydroxylase (F5H), and caffeoyl shikimate esterase (CSE), were targeted by MYB31 or MYB42, but in a more species-specific fashion. Our results revealed MYB31 and MYB42 participation in auto- and cross-regulation in all three species. Apart from a limited conservation of regulatory modules, MYB31 and MYB42 syntelogs appear to have undergone subfunctionalization following gene duplication and divergence of maize, sorghum, and rice. Elucidating the different regulatory roles of these syntelogs in the context of positive transcriptional activators may help guide attempts to alter the flux of intermediates towards lignin production in biofuel grasses.


Assuntos
Oryza/metabolismo , Sorghum/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Metiltransferases/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Análise de Sequência de RNA , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Fatores de Transcrição/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA