Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409065

RESUMO

The development and promotion of biofortified foods plants are a sustainable strategy for supplying essential micronutrients for human health and nutrition. We set out to identify quantitative trait loci (QTL) associated with carotenoid content in cowpea sprouts. The contents of carotenoids, including lutein, zeaxanthin, and ß-carotene in sprouts of 125 accessions were quantified via high-performance liquid chromatography. Significant variation existed in the profiles of the different carotenoids. Lutein was the most abundant (58 ± 12.8 mg/100 g), followed by zeaxanthin (14.7 ± 3.1 mg/100 g) and ß-carotene (13.2 ± 2.9 mg/100 g). A strong positive correlation was observed among the carotenoid compounds (r ≥ 0.87), indicating they can be improved concurrently. The accessions were distributed into three groups, following their carotenoid profiles, with accession C044 having the highest sprout carotenoid content in a single cluster. A total of 3120 genome-wide SNPs were tested for association analysis, which revealed that carotenoid biosynthesis in cowpea sprouts is a polygenic trait controlled by genes with additive and dominance effects. Seven loci were significantly associated with the variation in carotenoid content. The evidence of variation in carotenoid content and genomic regions controlling the trait creates an avenue for breeding cowpea varieties with enhanced sprouts carotenoid content.


Assuntos
Vigna , Carotenoides , Humanos , Luteína , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Vigna/genética , Zeaxantinas , beta Caroteno
2.
Plant Genome ; 14(3): e20113, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275189

RESUMO

Cowpea [Vigna unguiculata (L.) Walp] is a globally important food security crop. However, it is susceptible to pest and disease; hence, constant breeding efforts based on its diversity are required for its improvement. The present study aims to investigate the genetic diversity, population structure, and linkage disequilibrium (LD) among 274 cowpea accessions from different origins. A total of 3,127 single nucleotide polymorphism (SNP) markers generated using diversity array technology (DArT) was used. Population structure, neighbor-joining clustering, and principal component analyses indicated three subpopulations within the germplasm. Results of STRUCTURE analysis and discriminant analysis of principal components (DAPC) were complementary in assessing the structuration of the diversity among the germplasm, with the grouping of the accessions improved in DAPC. Genetic distances of 0.005-0.44 were observed among accessions. Accessions from western and central Africa, eastern and central Africa, and Asia were predominant and distributed across all subpopulations. The subpopulations had fixation indexes of 0.48-0.56. Analysis of molecular variance revealed that within subpopulation variation accounted for 81% of observed genetic variation in the germplasm. The subpopulations mainly consisted of inbred lines (inbreeding coefficient = 1) with common alleles, although they were from different geographical regions. This reflects considerable seed movement and germplasm exchange between regions. The LD was characterized by low decay for great physical distances between markers. The LD decay distance varied among chromosomes with the average distance of 80-100 kb across the genome. Thus, crop improvement is possible, and the LD will facilitate genome-wide association studies on quality attributes and critical agronomic traits in cowpea.


Assuntos
Vigna , Alelos , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Melhoramento Vegetal , Vigna/genética
3.
Plants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374402

RESUMO

Genomic selection (GS) can accelerate variety improvement when training set (TS) size and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%, and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***) between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

4.
Front Plant Sci ; 9: 895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026746

RESUMO

Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA