Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315434

RESUMO

BACKGROUND: Long QT syndrome is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often because of lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. METHODS: We quantified cell-surface trafficking of 18 796 variants in KCNH2 using a multiplexed assay of variant effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping. We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian long QT syndrome penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. RESULTS: Variant MAVE trafficking scores and automated patch clamping peak tail currents were highly correlated (Spearman rank-order ρ=0.69; n=433). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian long QT syndrome penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became nonsignificant when peak tail current and penetrance estimates were also available. The area under the receiver operator characteristic curve for 20-year event outcomes based on patient-specific sex and QTc (area under the curve, 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (area under the curve, 0.86 [0.83-0.89]) or attainable automated patch clamping peak tail current data (area under the curve, 0.84 [0.81-0.88]). CONCLUSIONS: High-throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale, whereas long QT syndrome penetrance estimates and automated patch clamping peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

2.
medRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38370760

RESUMO

Background: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here, we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,796 variants in KCNH2 using a Multiplexed Assay of Variant Effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping (APC). We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1,458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian LQTS penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. Results: Variant MAVE trafficking scores and APC peak tail currents were highly correlated (Spearman Rank-order ρ = 0.69). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian LQTS penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became non-significant when peak-tail current and penetrance estimates were also available. The area under the ROC for 20-year event outcomes based on patient-specific sex and QTc (AUC 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (AUC 0.86 [0.83-0.89]) or attainable APC peak tail current data (AUC 0.84 [0.81-0.88]). Conclusion: High throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale while LQTS penetrance estimates and APC peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

3.
Cell Calcium ; 113: 102752, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245392

RESUMO

Calmodulin (CaM) is a ubiquitous, calcium-sensing protein that regulates a multitude of processes throughout the body. In response to changes in [Ca2+], CaM modifies, activates, and deactivates enzymes and ion channels, as well as many other cellular processes. The importance of CaM is highlighted by the conservation of an identical amino acid sequence in all mammals. Alterations to CaM amino acid sequence were once thought to be incompatible with life. During the last decade modifications to the CaM protein sequence have been observed in patients suffering from life-threatening heart disease (calmodulinopathy). Thus far, inadequate or untimely interaction between mutant CaM and several proteins (LTCC, RyR2, and CaMKII) have been identified as mechanisms underlying calmodulinopathy. Given the extensive number of CaM interactions in the body, there are likely many consequences for altering CaM protein sequence. Here, we demonstrate that disease-associated CaM mutations alter the sensitivity and activity of the Ca2+-CaM-enhanced serine/threonine phosphatase calcineurin (CaN). Biophysical characterization by circular dichroism, solution NMR spectroscopy, stopped-flow kinetic measurements, and MD simulations provide mechanistic insight into mutation dysfunction as well as highlight important aspects of CaM Ca2+ signal transduction. We find that individual CaM point mutations (N53I, F89L, D129G, and F141L) impair CaN function, however, the mechanisms are not the same. Specifically, individual point mutations can influence or modify the following properties: CaM binding, Ca2+ binding, and/or Ca2+kinetics. Moreover, structural aspects of the CaNCaM complex can be altered in manners that indicate changes to allosteric transmission of CaM binding to the enzyme active site. Given that loss of CaN function can be fatal, as well as evidence that CaN modifies ion channels already associated with calmodulinopathy, our results raise the possibility that altered CaN function contributes to calmodulinopathy.


Assuntos
Calcineurina , Calmodulina , Animais , Humanos , Calmodulina/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Mutação , Sinalização do Cálcio , Ligação Proteica , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA