Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 23(8): 505-516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35478245

RESUMO

Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.


Assuntos
Núcleos Anteriores do Tálamo , Memória Episódica , Encéfalo , Hipocampo , Humanos , Lobo Temporal
2.
Eur J Neurosci ; 59(10): 2715-2731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494604

RESUMO

In a changing environment, animals must process spatial signals in a flexible manner. The rat hippocampal formation projects directly upon the retrosplenial cortex, with most inputs arising from the dorsal subiculum and terminating in the granular retrosplenial cortex (area 29). The present study examined whether these same projections are required for spatial working memory and what happens when available spatial cues are altered. Consequently, injections of iDREADDs were made into the dorsal subiculum of rats. In a separate control group, GFP-expressing adeno-associated virus was injected into the dorsal subiculum. Both groups received intracerebral infusions within the retrosplenial cortex of clozapine, which in the iDREADDs rats should selectively disrupt the subiculum to retrosplenial projections. When tested on reinforced T-maze alternation, disruption of the subiculum to retrosplenial projections had no evident effect on the performance of those alternation trials when all spatial-cue types remained present and unchanged. However, the same iDREADDs manipulation impaired performance on all three alternation conditions when there was a conflict or selective removal of spatial cues. These findings reveal how the direct projections from the dorsal subiculum to the retrosplenial cortex support the flexible integration of different spatial cue types, helping the animal to adopt the spatial strategy that best meets current environmental demands.


Assuntos
Hipocampo , Ratos Long-Evans , Memória Espacial , Animais , Masculino , Ratos , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Sinais (Psicologia) , Clozapina/farmacologia , Clozapina/análogos & derivados , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Vias Neurais/fisiologia , Vias Neurais/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia
3.
J Neurosci ; 41(30): 6511-6525, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34131030

RESUMO

Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology.SIGNIFICANCE STATEMENT At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.


Assuntos
Amnésia/fisiopatologia , Núcleos Anteriores do Tálamo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Memória Espacial/fisiologia , Animais , Masculino , Ratos
4.
Neuroimage ; 253: 119096, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304264

RESUMO

Invasive tract-tracing studies in rodents implicate a direct connection between the subiculum and bed nucleus of the stria terminalis (BNST) as a key component of neural pathways mediating hippocampal regulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis. A clear characterisation of the connections linking the subiculum and BNST in humans and non-human primates is lacking. To address this, we first delineated the projections from the subiculum to the BNST using anterograde tracers injected into macaque monkeys, revealing evidence for a monosynaptic subiculum-BNST projection involving the fornix. Second, we used in vivo diffusion MRI tractography in macaques and humans to demonstrate substantial subiculum complex connectivity to the BNST in both species. This connection was primarily carried by the fornix, with additional connectivity via the amygdala, consistent with rodent anatomy. Third, utilising the twin-based nature of our human sample, we found that microstructural properties of these tracts were moderately heritable (h2 ∼ 0.5). In a final analysis, we found no evidence of any significant association between subiculum complex-BNST tract microstructure and indices of perceived stress/dispositional negativity and alcohol use, derived from principal component analysis decomposition of self-report data. Our findings address a key translational gap in our knowledge of the neurocircuitry regulating stress.


Assuntos
Núcleos Septais , Animais , Hipocampo/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Macaca , Sistema Hipófise-Suprarrenal , Núcleos Septais/anatomia & histologia , Núcleos Septais/diagnóstico por imagem
5.
Eur J Neurosci ; 56(10): 5869-5887, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089888

RESUMO

As the functional properties of a cortical area partly reflect its thalamic inputs, the present study compared collateral projections arising from various rostral thalamic nuclei that terminate across prefrontal (including anterior cingulate) and retrosplenial areas in the rat brain. Two retrograde tracers, fast blue and cholera toxin B, were injected in pairs to different combinations of cortical areas. The research focused on the individual anterior thalamic nuclei, including the interanteromedial nucleus, nucleus reuniens and the laterodorsal nucleus. Of the principal anterior thalamic nuclei, only the anteromedial nucleus contained neurons reaching both the anterior cingulate cortex and adjacent cortical areas (prefrontal or retrosplenial), though the numbers were modest. For these same cortical pairings (medial prefrontal/anterior cingulate and anterior cingulate/retrosplenial), the interanteromedial nucleus and nucleus reuniens contained slightly higher proportions of bifurcating neurons (up to 11% of labelled cells). A contrasting picture was seen for collaterals reaching different areas within retrosplenial cortex. Here, the anterodorsal nucleus, typically provided the greatest proportion of bifurcating neurons (up to 15% of labelled cells). While individual neurons that terminate in different retrosplenial areas were also found in the other thalamic nuclei, they were infrequent. Consequently, these thalamo-cortical projections predominantly arise from separate populations of neurons with discrete cortical termination zones, consistent with the transmission of segregated information and influence. Overall, two contrasting medial-lateral patterns of collateral projections emerged, with more midline nuclei, for example, nucleus reuniens and the interoanteromedial nucleus innervating prefrontal areas, while more dorsal and lateral anterior thalamic collaterals innervated retrosplenial cortex.


Assuntos
Giro do Cíngulo , Núcleos Talâmicos , Ratos , Animais , Núcleos Talâmicos/fisiologia , Tálamo , Córtex Cerebral/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia
6.
Cereb Cortex ; 31(4): 2169-2186, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33251536

RESUMO

In a changing environment, organisms need to decide when to select items that resemble previously rewarded stimuli and when it is best to switch to other stimulus types. Here, we used chemogenetic techniques to provide causal evidence that activity in the rodent anterior cingulate cortex and its efferents to the anterior thalamic nuclei modulate the ability to attend to reliable predictors of important outcomes. Rats completed an attentional set-shifting paradigm that first measures the ability to master serial discriminations involving a constant stimulus dimension that reliably predicts reinforcement (intradimensional-shift), followed by the ability to shift attention to a previously irrelevant class of stimuli when reinforcement contingencies change (extradimensional-shift). Chemogenetic disruption of the anterior cingulate cortex (Experiment 1) as well as selective disruption of anterior cingulate efferents to the anterior thalamic nuclei (Experiment 2) impaired intradimensional learning but facilitated 2 sets of extradimensional-shifts. This pattern of results signals the loss of a corticothalamic system for cognitive control that preferentially processes stimuli resembling those previously associated with reward. Previous studies highlight a separate medial prefrontal system that promotes the converse pattern, that is, switching to hitherto inconsistent predictors of reward when contingencies change. Competition between these 2 systems regulates cognitive flexibility and choice.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Atenção/fisiologia , Giro do Cíngulo/metabolismo , Optogenética/métodos , Recompensa , Adenoviridae/metabolismo , Animais , Núcleos Anteriores do Tálamo/química , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Giro do Cíngulo/química , Giro do Cíngulo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Vias Neurais/química , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Piperazinas/administração & dosagem , Piperazinas/análise , Piperazinas/metabolismo , Ratos
7.
J Neurosci ; 40(36): 6978-6990, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32753513

RESUMO

The hippocampus is essential for normal memory but does not act in isolation. The anterior thalamic nuclei may represent one vital partner. Using DREADDs, the behavioral consequences of transiently disrupting anterior thalamic function were examined, followed by inactivation of the dorsal subiculum. Next, the anterograde transport of an adeno-associated virus expressing DREADDs was paired with localized intracerebral infusions of a ligand to target specific input pathways. In this way, the direct projections from the anterior thalamic nuclei to the dorsal hippocampal formation were inhibited, followed by separate inhibition of the dorsal subiculum projections to the anterior thalamic nuclei. To assay spatial working memory, all animals performed a reinforced T-maze alternation task, then a more challenging version that nullifies intramaze cues. Across all four experiments, deficits emerged on the spatial alternation task that precluded the use of intramaze cues. Inhibiting dorsal subiculum projections to the anterior thalamic nuclei produced the severest spatial working memory deficit. This deficit revealed the key contribution of dorsal subiculum projections to the anteromedial and anteroventral thalamic nuclei for the processing of allocentric information, projections not associated with head-direction information. The overall pattern of results provides consistent causal evidence of the two-way functional significance of direct hippocampal-anterior thalamic interactions for spatial processing. At the same time, these findings are consistent with hypotheses that these same, reciprocal interactions underlie the common core symptoms of temporal lobe and diencephalic anterograde amnesia.SIGNIFICANCE STATEMENT It has long been conjectured that the anterior thalamic nuclei might be key partners with the hippocampal formation and that, respectively, they are principally responsible for diencephalic and temporal lobe amnesia. However, direct causal evidence for this functional relationship is lacking. Here, we examined the behavioral consequences of transiently silencing the direct reciprocal interconnections between these two brain regions on tests of spatial learning. Disrupting information flow from the hippocampal formation to the anterior thalamic nuclei and vice versa impaired performance on tests of spatial learning. By revealing the conjoint importance of hippocampal-anterior thalamic pathways, these findings help explain why pathology in either the medial diencephalon or the medial temporal lobes can result in profound anterograde amnesic syndromes.


Assuntos
Hipocampo/fisiologia , Aprendizagem Espacial , Núcleos Talâmicos/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Ratos
8.
Neurobiol Learn Mem ; 185: 107516, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481970

RESUMO

Retrosplenial cortex contains two principal subdivisions, area 29 (granular) and area 30 (dysgranular). Their respective anatomical connections in the rat brain reveal that area 29 is the primary recipient of hippocampal and parahippocampal spatial and contextual information while area 30 is the primary interactor with current visual information. Lesion studies and measures of neuronal activity in rodents indicate that retrosplenial cortex helps to integrate space from different perspectives, e.g., egocentric and allocentric, providing landmark and heading cues for navigation and spatial learning. It provides a repository of scene information that, over time, becomes increasingly independent of the hippocampus. These processes, reflect the interactive actions between areas 29 and 30, along with their convergent influences on cortical and thalamic targets. Consequently, despite their differences, both areas 29 and 30 are necessary for an array of spatial and learning problems.


Assuntos
Giro do Cíngulo/fisiologia , Animais , Giro do Cíngulo/anatomia & histologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Ratos , Aprendizagem Espacial/fisiologia , Processamento Espacial/fisiologia , Núcleos Talâmicos/fisiologia
9.
Neurobiol Learn Mem ; 185: 107525, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555510

RESUMO

Retrosplenial cortex (RSC) lies at the interface between sensory and cognitive networks in the brain and mediates between these, although it is not yet known how. It has two distinct subregions, granular (gRSC) and dysgranular (dRSC). The present study investigated how these subregions differ with respect to their electrophysiology and thalamic connectivity, as a step towards understanding their functions. The gRSC is more closely connected to the hippocampal formation, in which theta-band local field potential oscillations are prominent. We, therefore, compared theta-rhythmic single-unit activity between the two RSC subregions and found, mostly in gRSC, a subpopulation of non-directional cells with spiking activity strongly entrained by theta oscillations, suggesting a stronger coupling of gRSC to the hippocampal system. We then used retrograde tracers to test for differential inputs to RSC from the anteroventral thalamus (AV). We found that gRSC and dRSC differ in their afferents from two AV subfields: dorsomedial (AVDM) and ventrolateral (AVVL). Specifically: (1) as a whole AV projects more strongly to gRSC; (2) AVVL targets both gRSC and dRSC, while AVDM provides a selective projection to gRSC, (3) the gRSC projection is layer-specific: AVDM targets specifically gRSC superficial layers. These same AV projections are topographically organized with ventral AV neurons innervating rostral RSC and dorsal AV neurons innervating caudal RSC. These combined results suggest the existence of two distinct but interacting RSC subcircuits: one connecting AVDM to gRSC that may comprise part of the cognitive hippocampal system, and the other connecting AVVL to both RSC regions that may link hippocampal and perceptual regions. We suggest that these subcircuits are distinct to allow for differential weighting during integration of converging sensory and cognitive computations: an integration that may take place in thalamus, RSC, or both.


Assuntos
Córtex Cerebral/fisiologia , Giro do Cíngulo/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Eletroencefalografia , Giro do Cíngulo/anatomia & histologia , Masculino , Vias Neurais/anatomia & histologia , Ratos , Ritmo Teta/fisiologia
10.
Cereb Cortex ; 30(8): 4424-4437, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32147692

RESUMO

The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.


Assuntos
Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Camundongos
11.
Behav Brain Sci ; 42: e282, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896352

RESUMO

The integrative memory model contains multiple subsystems. In this commentary, the processes within these subsystems are questioned. First, the assumption that familiarity largely reflects perceptual fluency is examined. Next, the distinction between "process" and "representational" models of temporal lobe function is challenged. Finally, the "relational representation core system" (or "extended hippocampal system"), which is central to the model, is especially sketchy. Here, I highlight key questions to be addressed in order to understand this system's role in trace formation.


Assuntos
Memória , Rememoração Mental , Hipocampo , Humanos , Transtornos da Memória , Lobo Temporal
12.
Eur J Neurosci ; 49(12): 1649-1672, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30633830

RESUMO

Nucleus reuniens receives dense projections from both the hippocampus and the frontal cortices. Reflecting these connections, this nucleus is thought to enable executive functions, including those involving spatial learning. The mammillary bodies, which also support spatial learning, again receive dense hippocampal inputs, as well as lighter projections from medial frontal areas. The present study, therefore, compared the sources of these inputs to nucleus reuniens and the mammillary bodies. Retrograde tracer injections in rats showed how these two diencephalic sites receive projections from separate cell populations, often from adjacent layers in the same cortical areas. In the subiculum, which projects strongly to both sites, the mammillary body inputs originate from a homogenous pyramidal cell population in more superficial levels, while the cells that target nucleus reuniens most often originate from cells positioned at a deeper level. In these deeper levels, a more morphologically diverse set of subiculum cells contributes to the thalamic projection, especially at septal levels. While both diencephalic sites also receive medial frontal inputs, those to nucleus reuniens are especially dense. The densest inputs to the mammillary bodies appear to arise from the dorsal peduncular cortex, where the cells are mostly separate from deeper neurons that project to nucleus reuniens. Again, in those other cortical regions that innervate both nucleus reuniens and the mammillary bodies, there was no evidence of collateral projections. The findings support the notion that these diencephalic nuclei represent components of distinct, but complementary, systems that support different aspects of cognition.


Assuntos
Córtex Cerebral/citologia , Corpos Mamilares/citologia , Núcleos da Linha Média do Tálamo/citologia , Neurônios/citologia , Animais , Masculino , Técnicas de Rastreamento Neuroanatômico , Ratos
13.
Eur J Neurosci ; 45(11): 1451-1464, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28394458

RESUMO

It has been proposed that the retrosplenial cortex forms part of a 'where/when' information network. The present study focussed on the related issue of whether retrosplenial cortex also contributes to 'what/when' information, by examining object recency memory. In Experiment 1, rats with retrosplenial lesions were found to be impaired at distinguishing the temporal order of objects presented in a continuous series ('Within-Block' condition). The same lesioned rats could, however, distinguish between objects that had been previously presented in one of two discrete blocks ('Between-Block' condition). Experiment 2 used intact rats to map the expression of the immediate-early gene c-fos in retrosplenial cortex following performance of a between-block, recency discrimination. Recency performance correlated positively with levels of c-fos expression in both granular and dysgranular retrosplenial cortex (areas 29 and 30). Expression of c-fos in the granular retrosplenial cortex also correlated with prelimbic cortex and ventral subiculum c-fos activity, the latter also correlating with recency memory performance. The combined findings from both experiments reveal an involvement of the retrosplenial cortex in temporal order memory, which includes both between-block and within-block problems. The current findings also suggest that the rat retrosplenial cortex comprises one of a group of closely interlinked regions that enable recency memory, including the hippocampal formation, medial diencephalon and medial frontal cortex. In view of the well-established importance of the retrosplenial cortex for spatial learning, the findings support the notion that, with its frontal and hippocampal connections, retrosplenial cortex has a key role for both what/when and where/when information.


Assuntos
Encéfalo/fisiologia , Memória Espacial , Animais , Encéfalo/citologia , Masculino , Memória de Longo Prazo , Memória de Curto Prazo , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
14.
Brain ; 139(Pt 7): 1877-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190025

RESUMO

It is widely assumed that incipient protein pathology in the medial temporal lobe instigates the loss of episodic memory in Alzheimer's disease, one of the earliest cognitive deficits in this type of dementia. Within this region, the hippocampus is seen as the most vital for episodic memory. Consequently, research into the causes of memory loss in Alzheimer's disease continues to centre on hippocampal dysfunction and how disease-modifying therapies in this region can potentially alleviate memory symptomology. The present review questions this entrenched notion by bringing together findings from post-mortem studies, non-invasive imaging (including studies of presymptomatic, at-risk cases) and genetically modified animal models. The combined evidence indicates that the loss of episodic memory in early Alzheimer's disease reflects much wider neurodegeneration in an extended mnemonic system (Papez circuit), which critically involves the limbic thalamus. Within this system, the anterior thalamic nuclei are prominent, both for their vital contributions to episodic memory and for how these same nuclei appear vulnerable in prodromal Alzheimer's disease. As thalamic abnormalities occur in some of the earliest stages of the disease, the idea that such changes are merely secondary to medial temporal lobe dysfunctions is challenged. This alternate view is further strengthened by the interdependent relationship between the anterior thalamic nuclei and retrosplenial cortex, given how dysfunctions in the latter cortical area provide some of the earliest in vivo imaging evidence of prodromal Alzheimer's disease. Appreciating the importance of the anterior thalamic nuclei for memory and attention provides a more balanced understanding of Alzheimer's disease. Furthermore, this refocus on the limbic thalamus, as well as the rest of Papez circuit, would have significant implications for the diagnostics, modelling, and experimental treatment of cognitive symptoms in Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Sistema Límbico/patologia , Memória Episódica , Tálamo/patologia , Animais , Humanos
15.
J Neurosci ; 35(14): 5480-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855166

RESUMO

The prefrontal cortex mediates adaption to changing environmental contingencies. The anterior thalamic nuclei, which are closely interconnected with the prefrontal cortex, are important for rodent spatial memory, but their potential role in executive function has received scant attention. The current study examined whether the anterior thalamic nuclei are involved in attentional processes akin to those of prefrontal regions. Remarkably, the results repeatedly revealed attentional properties opposite to those of the prefrontal cortex. Two separate cohorts of rats with anterior thalamic lesions were tested on an attentional set-shifting paradigm that measures not only the ability of stimuli dimensions that reliably predict reinforcement to gain attention ("intradimensional shift"), but also their ability to shift attention to another stimulus dimension when contingencies change ("extradimensional shift"). In stark contrast to the effects of prefrontal damage, anterior thalamic lesions impaired intradimensional shifts but facilitated extradimensional shifts. Anterior thalamic lesion animals were slower to acquire discriminations based on the currently relevant stimulus dimension but acquired discriminations involving previously irrelevant stimulus dimensions more rapidly than controls. Subsequent tests revealed that the critical determinant of whether anterior thalamic lesions facilitate extradimensional shifts is the degree to which the stimulus dimension has been established as an unreliable predictor of reinforcement over preceding trials. This pattern of performance reveals that the anterior thalamic nuclei are vital for attending to those stimuli that are the best predictors of reward. In their absence, unreliable predictors of reward usurp attentional control.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Atenção/fisiologia , Aprendizagem por Discriminação/fisiologia , Enquadramento Psicológico , Percepção Espacial/fisiologia , Análise de Variância , Animais , Núcleos Anteriores do Tálamo/lesões , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/toxicidade , Lateralidade Funcional , Ácido Ibotênico/toxicidade , Masculino , N-Metilaspartato/toxicidade , Ratos , Recompensa
16.
J Neurosci ; 35(2): 739-47, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589767

RESUMO

The fornix and hippocampus are critical to recollection in the healthy human brain. Fornix degeneration is a feature of aging and Alzheimer's disease. In the presence of fornix damage in mild cognitive impairment (MCI), a recognized prodrome of Alzheimer's disease, recall shows greater dependence on other tracts, notably the parahippocampal cingulum (PHC). The current aims were to determine whether this shift is adaptive and to probe its relationship to cholinergic signaling, which is also compromised in Alzheimer's disease. Twenty-five human participants with MCI and 20 matched healthy volunteers underwent diffusion MRI, behavioral assessment, and volumetric measurement of the basal forebrain. In a regression model for recall, there was a significant group × fornix interaction, indicating that the association between recall and fornix structure was weaker in patients. The opposite trend was present for the left PHC. To further investigate this pattern, two regression models were generated to account for recall performance: one based on fornix microstructure and the other on both fornix and left PHC. The realignment to PHC was positively correlated with free recall but not non-memory measures, implying a reconfiguration that is beneficial to residual memory. There was a positive relationship between realignment to PHC and basal forebrain gray matter volume despite this region demonstrating atrophy at a group level, i.e., the cognitive realignment to left PHC was most apparent when cholinergic areas were relatively spared. Therefore, cholinergic systems appear to enable adaptation to injury even as they degenerate, which has implications for functional restoration.


Assuntos
Disfunção Cognitiva/fisiopatologia , Memória Episódica , Rememoração Mental , Prosencéfalo/fisiopatologia , Substância Branca/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Fórnice/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Prosencéfalo/patologia
17.
Neuroimage ; 130: 35-47, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26778129

RESUMO

The fornix connects the hippocampal formation with structures beyond the temporal lobe. Previous tractography studies have typically reconstructed the fornix as one unified bundle. However, the fornix contains two rostral divisions: the precommissural fornix and the postcommissural fornix. Each division has distinct anatomical connections and, hence, potentially distinct functions. Diffusion weighted MRI and spherical deconvolution based tractography were employed to reconstruct these separate fornix divisions and to examine their microstructural properties in both healthy ageing and Mild Cognitive Impairment (MCI). Reliable reconstructions of precommissural and postcommissural fibres were achieved in both groups, with their fibres retaining largely separate locations within the anterior body of the fornix. Ageing and MCI had comparable effects on the two segments. Ageing was associated with changes in mean, axial and radial diffusivity but not with alterations of fibre population-specific diffusion properties, estimated with the hindrance modulated orientational anisotropy (HMOA). Individual HMOA variation in postcommissural, but not precommissural, fibres correlated positively (and unrelated to age) with visual recall performance. This provides novel evidence for a role of postcommissural fibres, which connect structures of the extended hippocampal network, in episodic memory function. Separating the fornix into its two principal divisions brings new opportunities for distinguishing different hippocampal networks.


Assuntos
Envelhecimento/patologia , Disfunção Cognitiva/diagnóstico por imagem , Fórnice/patologia , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Memória Episódica , Pessoa de Meia-Idade , Vias Neurais/patologia
18.
Hippocampus ; 26(11): 1393-1413, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27398938

RESUMO

Perirhinal cortex provides object-based information and novelty/familiarity information for the hippocampus. The necessity of these inputs was tested by comparing hippocampal c-fos expression in rats with or without perirhinal lesions. These rats either discriminated novel from familiar objects (Novel-Familiar) or explored pairs of novel objects (Novel-Novel). Despite impairing Novel-Familiar discriminations, the perirhinal lesions did not affect novelty detection, as measured by overall object exploration levels (Novel-Novel condition). The perirhinal lesions also largely spared a characteristic network of linked c-fos expression associated with novel stimuli (entorhinal cortex→CA3→distal CA1→proximal subiculum). The findings show: I) that perirhinal lesions preserve behavioral sensitivity to novelty, whilst still impairing the spontaneous ability to discriminate novel from familiar objects, II) that the distinctive patterns of hippocampal c-fos activity promoted by novel stimuli do not require perirhinal inputs, III) that entorhinal Fos counts (layers II and III) increase for novelty discriminations, IV) that hippocampal c-fos networks reflect proximal-distal connectivity differences, and V) that discriminating novelty creates different pathway interactions from merely detecting novelty, pointing to top-down effects that help guide object selection. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.


Assuntos
Discriminação Psicológica/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Córtex Perirrinal/fisiologia , Reconhecimento Psicológico/fisiologia , Análise de Variância , Animais , Contagem de Células , Comportamento Exploratório/fisiologia , Hipocampo/anatomia & histologia , Aprendizagem em Labirinto/fisiologia , Proteínas Oncogênicas v-fos/metabolismo , Córtex Perirrinal/lesões , Ratos
19.
Eur J Neurosci ; 43(8): 1044-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855336

RESUMO

The origins of the hippocampal (subicular) projections to the anterior thalamic nuclei and mammillary bodies were compared in rats and macaque monkeys using retrograde tracers. These projections form core components of the Papez circuit, which is vital for normal memory. The study revealed a complex pattern of subicular efferents, consistent with the presence of different, parallel information streams, whose segregation appears more marked in the rat brain. In both species, the cells projecting to the mammillary bodies and anterior thalamic nuclei showed laminar separation but also differed along other hippocampal axes. In the rat, these diencephalic inputs showed complementary topographies in the proximal-distal (columnar) plane, consistent with differential involvement in object-based (proximal subiculum) and context-based (distal subiculum) information. The medial mammillary inputs, which arose along the anterior-posterior extent of the rat subiculum, favoured the central subiculum (septal hippocampus) and the more proximal subiculum (temporal hippocampus). In contrast, anterior thalamic inputs were largely confined to the dorsal (i.e. septal and intermediate) subiculum, where projections to the anteromedial nucleus favoured the proximal subiculum while those to the anteroventral nucleus predominantly arose in the distal subiculum. In the macaque, the corresponding diencephalic inputs were again distinguished by anterior-posterior topographies, as subicular inputs to the medial mammillary bodies predominantly arose from the posterior hippocampus while subicular inputs to the anteromedial thalamic nucleus predominantly arose from the anterior hippocampus. Unlike the rat, there was no clear evidence of proximal-distal separation as all of these medial diencephalic projections preferentially arose from the more distal subiculum.


Assuntos
Núcleos Anteriores do Tálamo/anatomia & histologia , Hipocampo/anatomia & histologia , Corpos Mamilares/anatomia & histologia , Animais , Macaca fascicularis , Macaca mulatta , Masculino , Vias Neurais/anatomia & histologia , Ratos , Especificidade da Espécie
20.
Cereb Cortex ; 25(11): 4351-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25715284

RESUMO

The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex.


Assuntos
Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Aminoácidos/metabolismo , Animais , Autorradiografia , Estudos de Coortes , Feminino , Lateralidade Funcional , Macaca fascicularis , Macaca mulatta , Masculino , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA