Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Anat ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613211

RESUMO

Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.

2.
Audiol Neurootol ; : 1-13, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38763131

RESUMO

INTRODUCTION: Otosclerosis is a bone disorder affecting the labyrinthine capsule that leads to conductive and occasionally sensorineural hearing loss. The etiology of otosclerosis remains unknown; factors such as infection, hormones, inflammation, genetics, and autoimmunity have been discussed. Treatment consists primarily of surgical stapes replacement and cochlear implantation. High-resolution computed tomography is routinely used to visualize bone pathology. In the present study, we used synchrotron radiation phase-contrast imaging (SR-PCI) to examine otosclerosis plaques in a temporal bone for the first time. The primary aim was to study their three-dimensional (3D) outline, vascular interrelationships, and connections to the middle ear. METHODS: A donated ear from a patient with otosclerosis who had undergone partial stapedectomy with the insertion of a stapes wire prosthesis was investigated using SR-PCI and compared with a control ear. Otosclerotic lesions were 3D rendered using the composite with shading technique. Scalar opacity and color mapping were adjusted to display volume properties with the removal of bones to enhance surfaces. Vascular bone channels were segmented, and the communications between lesions and the middle ear were established. RESULTS: Fenestral, cochlear, meatal, and vestibular lesions were outlined three-dimensionally. Vascular bone channels were found to be frequently connected to the middle ear mucosa, perilabyrinthine air spaces, and facial nerve vessels. Round window lesions partly embedded the cochlear aqueduct which was pathologically narrowed, while the inferior cochlear vein was significantly dilated in its proximal part. CONCLUSION: Otosclerotic/otospongiotic lesions were imaged for the first time using SR-PCI and 3D rendering. The presence of shunts and abnormal vascular connections to the labyrinth appeared to result in hyper-vascularization, overloading the venous system, and leading to sensorineural hearing loss. We speculate about possible local treatments to alleviate the impact of such critical lesions on the labyrinthine microcirculation.

3.
Ear Hear ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38915137

RESUMO

OBJECTIVES: A wide variety of intraoperative tests are available in cochlear implantation. However, no consensus exists on which tests constitute the minimum necessary battery. We assembled an international panel of clinical experts to develop, refine, and vote upon a set of core consensus statements. DESIGN: A literature review was used to identify intraoperative tests currently used in the field and draft a set of provisional statements. For statement evaluation and refinement, we used a modified Delphi consensus panel structure. Multiple interactive rounds of voting, evaluation, and feedback were conducted to achieve convergence. RESULTS: Twenty-nine provisional statements were included in the original draft. In the first voting round, consensus was reached on 15 statements. Of the 14 statements that did not reach consensus, 12 were revised based on feedback provided by the expert practitioners, and 2 were eliminated. In the second voting round, 10 of the 12 revised statements reached a consensus. The two statements which did not achieve consensus were further revised and subjected to a third voting round. However, both statements failed to achieve consensus in the third round. In addition, during the final revision, one more statement was decided to be deleted due to overlap with another modified statement. CONCLUSIONS: A final core set of 24 consensus statements was generated, covering wide areas of intraoperative testing during CI surgery. These statements may provide utility as evidence-based guidelines to improve quality and achieve uniformity of surgical practice.

4.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903654

RESUMO

The COVID-19 pandemic presented enormous data challenges in the United States. Policy makers, epidemiological modelers, and health researchers all require up-to-date data on the pandemic and relevant public behavior, ideally at fine spatial and temporal resolution. The COVIDcast API is our attempt to fill this need: Operational since April 2020, it provides open access to both traditional public health surveillance signals (cases, deaths, and hospitalizations) and many auxiliary indicators of COVID-19 activity, such as signals extracted from deidentified medical claims data, massive online surveys, cell phone mobility data, and internet search trends. These are available at a fine geographic resolution (mostly at the county level) and are updated daily. The COVIDcast API also tracks all revisions to historical data, allowing modelers to account for the frequent revisions and backfill that are common for many public health data sources. All of the data are available in a common format through the API and accompanying R and Python software packages. This paper describes the data sources and signals, and provides examples demonstrating that the auxiliary signals in the COVIDcast API present information relevant to tracking COVID activity, augmenting traditional public health reporting and empowering research and decision-making.


Assuntos
COVID-19/epidemiologia , Bases de Dados Factuais , Indicadores Básicos de Saúde , Assistência Ambulatorial/tendências , Métodos Epidemiológicos , Humanos , Internet/estatística & dados numéricos , Distanciamento Físico , Inquéritos e Questionários , Viagem , Estados Unidos/epidemiologia
5.
Phys Chem Chem Phys ; 25(16): 11286-11300, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37066676

RESUMO

Se is now considered as a potential centre for hydrogen bond interactions. The hydrogen bond acceptor ability of Se has been investigated in [ROH-Se(CH3)2] complexes (R = H, CH3, and C2H5) using matrix-isolation infrared spectroscopy and electronic structure calculations. The first impression of the IR spectra of the hydrogen bond complexes of [ROH-Se(CH3)2] in N2 and Ar matrices is presented here. Moreover, no spectroscopic data are available for the [HOH-Se(CH3)2] complex. Vibrational spectra in the OH stretching region indicate the formation of the [ROH-Se(CH3)2] complex under the matrix-isolation conditions. Comparison of the experimental spectra with the simulated vibrational frequencies at different levels of theory confirms the formation of the 1 : 1 cluster of [ROH-Se(CH3)2] stabilised by O-H⋯Se hydrogen bond interactions. Multiple conformers of the [CH3OH-Se(CH3)2] complex having marginally different stabilisation energies have been predicted from electronic structure calculations and signatures of the same have been observed under the cold conditions of matrix isolation. Conformer specific assignment of the 1 : 1 cluster of [C2H5OH-Se(CH3)2] (anti and gauche forms) has been carried out in both the matrices. Concentration dependent experiments indicate the formation of higher order clusters and/or mixed clusters along with the formation of a 1 : 1 cluster for CH3OH and C2H5OH. The nature of the selenium centred hydrogen bond has been delineated using AIM, NBO and energy decomposition analysis. A comparison of similar complexes of H2O, CH3OH, and C2H5OH with O, S and Se indicates that Se is not far away in hydrogen bond acceptor ability compared to O and S.

6.
Int J Audiol ; 62(1): 12-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015963

RESUMO

OBJECTIVE: The Earlens is a direct-drive hearing device consisting of a lens which physically displaces the umbo to achieve appropriate gain. The objective is to determine the clinical acceptability of clinical immittance measurements in Earlens wearers. DESIGN: Controlled before-after within-subjects repeated measures study. STUDY SAMPLE: Data is reported for measurements obtained on 15 subjects (average age of 72.2 years) with data from 30 ears. RESULTS: There was a small effect of lens placement on sound field thresholds in most subjects. The largest damping effect of 4 dB was observed at 1000 Hz. An average reduction of 0.17 mL was identified in compliance following lens placement (p < 0.05). An effect of the lens on power absorbance obtained at ambient and peak pressure was found. The lens resulted in an increase in power absorbance at low frequencies (below 500 Hz) and a decrease in the mid to high-frequency range of approximately 500-3500 Hz (p < 0.05). CONCLUSIONS: Lens wear had a small effect on audiometric thresholds and tympanometry for most patients. Clinicians who use compliance and power absorbance should take into consideration lens effects on these measurements. Additional work is required to develop clinical normative ranges of these measures for wearers of the Earlens.


Assuntos
Testes de Impedância Acústica , Orelha Média , Humanos , Idoso , Testes de Impedância Acústica/métodos , Audição , Audiometria , Acústica
7.
Hum Genet ; 141(3-4): 965-979, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34633540

RESUMO

Otosclerosis is a bone disorder of the otic capsule and common form of late-onset hearing impairment. Considered a complex disease, little is known about its pathogenesis. Over the past 20 years, ten autosomal dominant loci (OTSC1-10) have been mapped but no genes identified. Herein, we map a new OTSC locus to a 9.96 Mb region within the FOX gene cluster on 16q24.1 and identify a 15 bp coding deletion in Forkhead Box L1 co-segregating with otosclerosis in a Caucasian family. Pre-operative phenotype ranges from moderate to severe hearing loss to profound sensorineural loss requiring a cochlear implant. Mutant FOXL1 is both transcribed and translated and correctly locates to the cell nucleus. However, the deletion of 5 residues in the C-terminus of mutant FOXL1 causes a complete loss of transcriptional activity due to loss of secondary (alpha helix) structure. FOXL1 (rs764026385) was identified in a second unrelated case on a shared background. We conclude that FOXL1 (rs764026385) is pathogenic and causes autosomal dominant otosclerosis and propose a key inhibitory role for wildtype Foxl1 in bone remodelling in the otic capsule. New insights into the molecular pathology of otosclerosis from this study provide molecular targets for non-invasive therapeutic interventions.


Assuntos
Otosclerose , Fatores de Transcrição Forkhead/genética , Humanos , Otosclerose/genética
8.
Cochrane Database Syst Rev ; 7: CD008080, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867413

RESUMO

BACKGROUND: Idiopathic sudden sensorineural hearing loss (ISSNHL) is common, and defined as a sudden decrease in sensorineural hearing sensitivity of unknown aetiology. Systemic corticosteroids are widely used, however their value remains unclear. Intratympanic injections of corticosteroids have become increasingly common in the treatment of ISSNHL. OBJECTIVES: To assess the effects of intratympanic corticosteroids in people with ISSNHL. SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; CENTRAL (2021, Issue 9); PubMed; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials (search date 23 September 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving people with ISSNHL and follow-up of over a week. Intratympanic corticosteroids were given as primary or secondary treatment (after failure of systemic therapy). DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods, including GRADE to assess the certainty of the evidence. Our primary outcome was change in hearing threshold with pure tone audiometry. Secondary outcomes included the proportion of people whose hearing improved, final hearing threshold, speech audiometry, frequency-specific hearing changes and adverse effects. MAIN RESULTS: We included 30 studies, comprising 2133 analysed participants. Some studies had more than two treatment arms and were therefore relevant to several comparisons. Studies investigated intratympanic corticosteroids as either primary (initial) therapy or secondary (rescue) therapy after failure of initial treatment. 1. Intratympanic corticosteroids versus systemic corticosteroids as primary therapy We identified 16 studies (1108 participants). Intratympanic therapy may result in little to no improvement in the change in hearing threshold (mean difference (MD) -5.93 dB better, 95% confidence interval (CI) -7.61 to -4.26; 10 studies; 701 participants; low-certainty). We found little to no difference in the proportion of participants whose hearing was improved (risk ratio (RR) 1.04, 95% CI 0.97 to 1.12; 14 studies; 972 participants; moderate-certainty). Intratympanic therapy may result in little to no difference in the final hearing threshold (MD -3.31 dB, 95% CI -6.16 to -0.47; 7 studies; 516 participants; low-certainty). Intratympanic therapy may increase the number of people who experience vertigo or dizziness (RR 2.53, 95% CI 1.41 to 4.54; 1 study; 250 participants; low-certainty) and probably increases the number of people with ear pain (RR 15.68, 95% CI 6.22 to 39.49; 2 studies; 289 participants; moderate-certainty). It also resulted in persistent tympanic membrane perforation (range 0% to 3.9%; 3 studies; 359 participants; very low-certainty), vertigo/dizziness at the time of injection (1% to 21%, 3 studies; 197 participants; very low-certainty) and ear pain at the time of injection (10.5% to 27.1%; 2 studies; 289 participants; low-certainty). 2. Intratympanic plus systemic corticosteroids (combined therapy) versus systemic corticosteroids alone as primary therapy We identified 10 studies (788 participants). Combined therapy may have a small effect on the change in hearing threshold (MD -8.55 dB better, 95% CI -12.48 to -4.61; 6 studies; 435 participants; low-certainty). The evidence is very uncertain as to whether combined therapy changes the proportion of participants whose hearing is improved (RR 1.27, 95% CI 1.15 to 1.41; 10 studies; 788 participants; very low-certainty). Combined therapy may result in slightly lower (more favourable) final hearing thresholds but the evidence is very uncertain, and it is not clear whether the change would be important to patients (MD -9.11 dB, 95% CI -16.56 to -1.67; 3 studies; 194 participants; very low-certainty). Some adverse effects only occurred in those who received combined therapy. These included persistent tympanic membrane perforation (range 0% to 5.5%; 5 studies; 474 participants; very low-certainty), vertigo or dizziness at the time of injection (range 0% to 8.1%; 4 studies; 341 participants; very low-certainty) and ear pain at the time of injection (13.5%; 1 study; 73 participants; very low-certainty).  3. Intratympanic corticosteroids versus no treatment or placebo as secondary therapy We identified seven studies (279 participants). Intratympanic therapy may have a small effect on the change in hearing threshold (MD -9.07 dB better, 95% CI -11.47 to -6.66; 7 studies; 280 participants; low-certainty). Intratympanic therapy may result in a much higher proportion of participants whose hearing is improved (RR 5.55, 95% CI 2.89 to 10.68; 6 studies; 232 participants; low-certainty). Intratympanic therapy may result in lower (more favourable) final hearing thresholds (MD -11.09 dB, 95% CI -17.46 to -4.72; 5 studies; 203 participants; low-certainty). Some adverse effects only occurred in those who received intratympanic injection. These included persistent tympanic membrane perforation (range 0% to 4.2%; 5 studies; 185 participants; very low-certainty), vertigo or dizziness at the time of injection (range 6.7% to 33%; 3 studies; 128 participants; very low-certainty) and ear pain at the time of injection (0%; 1 study; 44 participants; very low-certainty).  4. Intratympanic plus systemic corticosteroids (combined therapy) versus systemic corticosteroids alone as secondary therapy We identified one study with 76 participants. Change in hearing threshold was not reported. Combined therapy may result in a higher proportion with hearing improvement, but the evidence is very uncertain (RR 2.24, 95% CI 1.10 to 4.55; very low-certainty). Adverse effects were poorly reported with only data for persistent tympanic membrane perforation (rate 8.1%, very low-certainty). AUTHORS' CONCLUSIONS: Most of the evidence in this review is low- or very low-certainty, therefore it is likely that further studies may change our conclusions.   For primary therapy, intratympanic corticosteroids may have little or no effect compared with systemic corticosteroids. There may be a slight benefit from combined treatment when compared with systemic treatment alone, but the evidence is uncertain. For secondary therapy, there is low-certainty evidence that intratympanic corticosteroids, when compared to no treatment or placebo, may result in a much higher proportion of participants whose hearing is improved, but may only have a small effect on the change in hearing threshold. It is very uncertain whether there is additional benefit from combined treatment over systemic steroids alone. Although adverse effects were poorly reported, the different risk profiles of intratympanic treatment (including tympanic membrane perforation, pain and dizziness/vertigo) and systemic treatment (for example, blood glucose problems) should be considered when selecting appropriate treatment.


Assuntos
Perda Auditiva Neurossensorial , Perfuração da Membrana Timpânica , Corticosteroides/efeitos adversos , Tontura , Perda Auditiva Neurossensorial/tratamento farmacológico , Humanos , Dor/tratamento farmacológico , Perfuração da Membrana Timpânica/tratamento farmacológico , Vertigem/tratamento farmacológico
9.
Sensors (Basel) ; 22(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957175

RESUMO

The receive sensitivity of lead zirconate titanate (PZT) piezoelectric micromachined ultrasound transducers (PMUTs) was improved by applying a DC bias during operation. The PMUT receive sensitivity is governed by the voltage piezoelectric coefficient, h31,f. With applied DC biases (up to 15 V) on a 2 µm PbZr0.52Ti0.48O3 film, e31,f increased 1.6 times, permittivity decreased by a factor of 0.6, and the voltage coefficient increased by ~2.5 times. For released PMUT devices, the ultrasound receive sensitivity improved by 2.5 times and the photoacoustic signal improved 1.9 times with 15 V applied DC bias. B-mode photoacoustic imaging experiments showed that with DC bias, the PMUT received clearer photoacoustic signals from pencil leads at 4.3 cm, compared to 3.7 cm without DC bias.


Assuntos
Diagnóstico por Imagem , Transdutores , Viés , Desenho de Equipamento , Ultrassonografia/métodos
10.
J Anat ; 239(4): 771-781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34057736

RESUMO

The ossicular chain is a middle ear structure consisting of the small incus, malleus and stapes bones, which transmit tympanic membrane vibrations caused by sound to the inner ear. Despite being shown to be highly variable in shape, there are very few morphological studies of the ossicles. The objective of this study was to use a large sample of cadaveric ossicles to create a set of three-dimensional models and study their statistical variance. Thirty-three cadaveric temporal bone samples were scanned using micro-computed tomography (µCT) and segmented. Statistical shape models (SSMs) were then made for each ossicle to demonstrate the divergence of morphological features. Results revealed that ossicles were most likely to vary in overall size, but that more specific feature variability was found at the manubrium of the malleus, the long process and lenticular process of the incus, and the crura and footplate of the stapes. By analyzing samples as whole ossicular chains, it was revealed that when fixed at the malleus, changes along the chain resulted in a wide variety of final stapes positions. This is the first known study to create high-quality, three-dimensional SSMs of the human ossicles. This information can be used to guide otological surgical training and planning, inform ossicular prosthesis development, and assist with other ossicular studies and applications by improving automated segmentation algorithms. All models have been made publicly available.


Assuntos
Ossículos da Orelha , Bigorna , Ossículos da Orelha/diagnóstico por imagem , Humanos , Martelo , Estribo , Microtomografia por Raio-X
11.
Sensors (Basel) ; 21(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435375

RESUMO

Vascular diseases are becoming an epidemic with an increasing aging population and increases in obesity and type II diabetes. Point-of-care (POC) diagnosis and monitoring of vascular diseases is an unmet medical need. Photoacoustic imaging (PAI) provides label-free multiparametric information of deep vasculature based on strong absorption of light photons by hemoglobin molecules. However, conventional PAI systems use bulky nanosecond lasers which hinders POC applications. Recently, light-emitting diodes (LEDs) have emerged as cost-effective and portable optical sources for the PAI of living subjects. However, state-of-art LED arrays carry significantly lower optical energy (<0.5 mJ/pulse) and high pulse repetition frequencies (PRFs) (4 KHz) compared to the high-power laser sources (100 mJ/pulse) with low PRFs of 10 Hz. Given these tradeoffs between portability, cost, optical energy and frame rate, this work systematically studies the deep tissue PAI performance of LED and laser illuminations to help select a suitable source for a given biomedical application. To draw a fair comparison, we developed a fiberoptic array that delivers laser illumination similar to the LED array and uses the same ultrasound transducer and data acquisition platform for PAI with these two illuminations. Several controlled studies on tissue phantoms demonstrated that portable LED arrays with high frame averaging show higher signal-to-noise ratios (SNRs) of up to 30 mm depth, and the high-energy laser source was found to be more effective for imaging depths greater than 30 mm at similar frame rates. Label-free in vivo imaging of human hand vasculature studies further confirmed that the vascular contrast from LED-PAI is similar to laser-PAI for up to 2 cm depths. Therefore, LED-PAI systems have strong potential to be a mobile health care technology for diagnosing vascular diseases such as peripheral arterial disease and stroke in POC and resource poor settings.


Assuntos
Sistema Cardiovascular , Diabetes Mellitus Tipo 2 , Técnicas Fotoacústicas , Idoso , Sistema Cardiovascular/diagnóstico por imagem , Diagnóstico por Imagem , Humanos , Iluminação , Imagens de Fantasmas
12.
Phys Chem Chem Phys ; 22(39): 22465-22476, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32996938

RESUMO

Methanol (CH3OH) is the simplest alcohol and carbon tetrachloride (CCl4) is widely used as a solvent in the chemical industry. CH3OH and CCl4 are both important volatile substances in the atmosphere and CCl4 is an important precursor for atmospheric ozone depletion. Moreover, mixtures of CH3OH and CCl4 are an important class of non-aqueous mixtures as they exhibit a large deviation from Raoult's law. The specific interaction between CH3OH and CCl4 is not yet investigated experimentally. The interaction between CH3OH and CCl4 at the molecular level can be twofold: hydrogen bond (O-HCl) and halogen bond (C-ClO) interaction. One halogen bonded minimum and two hydrogen bonded minima are identified in the dimer potential energy surface. Herein, the 1 : 1 complex of [CH3OH-CCl4] has been characterised using matrix-isolation infrared spectroscopy and electronic structure calculations to investigate the competition between hydrogen bonded and halogen bonded complexes. Vibrational spectra have been monitored in the C-Cl, C-O, and O-H stretching regions. The exclusive formation of halogen bonded 1 : 1 complexes in argon and nitrogen matrices is confirmed by a combination of experimental and simulated vibrational frequency, stabilisation energy, energy decomposition analysis, and natural bond orbital and atoms-in-molecules analyses. This investigation helps to understand the specific interactions in the [CH3OH-CCl4] mixture and also the possibilities of formation of halogen bonded atmospheric complexes that may influence the atmospheric chemical activities, and enhance aerosol formation and deposition of CCl4.

13.
Ear Hear ; 41(1): 173-181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31008733

RESUMO

OBJECTIVE: To three-dimensionally reconstruct Rosenthal's canal (RC) housing the human spiral ganglion (SG) using synchrotron radiation phase-contrast imaging (SR-PCI). Straight cochlear implant electrode arrays were inserted to better comprehend the electro-cochlear interface in cochlear implantation (CI). DESIGN: SR-PCI was used to reconstruct the human cochlea with and without cadaveric CI. Twenty-eight cochleae were volume rendered, of which 12 underwent cadaveric CI with a straight electrode via the round window (RW). Data were input into the 3D Slicer software program and anatomical structures were modeled using a threshold paint tool. RESULTS: The human RC and SG were reproduced three-dimensionally with artefact-free imaging of electrode arrays. The anatomy of the SG and its relationship to the sensory organ (Corti) and soft and bony structures were assessed. CONCLUSIONS: SR-PCI and computer-based three-dimensional reconstructions demonstrated the relationships among implanted electrodes, angular insertion depths, and the SG for the first time in intact, unstained, and nondecalcified specimens. This information can be used to assess stimulation strategies and future electrode designs, as well as create place-frequency maps of the SG for optimal stimulation strategies of the human auditory nerve in CI.


Assuntos
Implante Coclear , Implantes Cocleares , Intervenção Coronária Percutânea , Cóclea/cirurgia , Eletrodos Implantados , Humanos , Gânglio Espiral da Cóclea , Síncrotrons
14.
Int J Audiol ; 59(7): 556-565, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32069128

RESUMO

Objective: To assess the performance of an active transcutaneous implantable-bone conduction device (TI-BCD), and to evaluate the benefit of device digital signal processing (DSP) features in challenging listening environments.Design: Participants were tested at 1- and 3-month post-activation of the TI-BCD. At each session, aided and unaided phoneme perception was assessed using the Ling-6 test. Speech reception thresholds (SRTs) and quality ratings of speech and music samples were collected in noisy and reverberant environments, with and without the DSP features. Self-assessment of the device performance was obtained using the Abbreviated Profile of Hearing Aid Benefit (APHAB) questionnaire.Study sample: Six adults with conductive or mixed hearing loss.Results: Average SRTs were 2.9 and 12.3 dB in low and high reverberation environments, respectively, which improved to -1.7 and 8.7 dB, respectively with the DSP features. In addition, speech quality ratings improved by 23 points with the DSP features when averaged across all environmental conditions. Improvement scores on APHAB scales revealed a statistically significant aided benefit.Conclusions: Noise and reverberation significantly impacted speech recognition performance and perceived sound quality. DSP features (directional microphone processing and adaptive noise reduction) significantly enhanced subjects' performance in these challenging listening environments.


Assuntos
Condução Óssea , Correção de Deficiência Auditiva/instrumentação , Auxiliares de Audição , Perda Auditiva Condutiva/fisiopatologia , Perda Auditiva Condutiva-Neurossensorial Mista/fisiopatologia , Adulto , Feminino , Perda Auditiva Condutiva/reabilitação , Perda Auditiva Condutiva-Neurossensorial Mista/reabilitação , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Avaliação de Resultados em Cuidados de Saúde , Desenho de Prótese , Processamento de Sinais Assistido por Computador , Percepção da Fala , Teste do Limiar de Recepção da Fala
15.
IEEE Sens J ; 20(13): 6881-6888, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32601522

RESUMO

Several breakthrough applications in biomedical imaging have been reported in the recent years using advanced photoacoustic microscopy imaging systems. While two photon and other optical microscopy systems have recently emerged in portable and wearable form, there is much less work reported on the portable and wearable photoacoustic microscopy (PAM) systems. Working towards this goal, we report our studies on a low-cost and portable photoacoustic microscopy system that uses a custom fabricated 2.5 mm diameter ring ultrasound transducer integrated with a fiber-coupled laser diode. The ultrasound transducer is centered at 17.25 MHz, and shows ~ 45% and ~ 100% fractional bandwidths for ultrasound pulse-echo and photoacoustic A-line signals respectively. To achieve overall system portability, besides the imaging head, other backend imaging system components need to be readily portable as well. In this direction, we have studied the potential use of compact pre-amplifiers, scanning stages and microcontroller based data acquisition and reconstruction for photoacoustic imaging. The portable PAM system is validated by imaging phantoms embedded with light absorbing targets. Future directions that will likely help achieve a completely portable and wearable photoacoustic microscopy system are discussed.

16.
J Anat ; 234(3): 316-326, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565214

RESUMO

A thorough knowledge of the gross and micro-anatomy of the human internal acoustic canal (IAC) is essential in vestibular schwannoma removal, cochlear implantation (CI) surgery, vestibular nerve section, and decompression procedures. Here, we analyzed the acoustic-facial cistern of the human IAC, including nerves and anastomoses using synchrotron phase contrast imaging (SR-PCI). A total of 26 fresh human temporal bones underwent SR-PCI. Data were processed using volume-rendering software to create three-dimensional (3D) reconstructions allowing soft tissue analyses, orthogonal sectioning, and cropping. A scalar opacity mapping tool was used to enhance tissue surface borders, and anatomical structures were color-labeled for improved 3D comprehension of the soft tissues. SR-PCI reproduced, for the first time, the variable 3D anatomy of the human IAC, including cranial nerve complexes, anastomoses, and arachnoid membrane invagination (acoustic-facial cistern; an extension of the cerebellopontine cistern) in unprocessed, un-decalcified specimens. An unrecognized system of arachnoid pillars and trabeculae was found to extend between the arachnoid and cranial nerves. We confirmed earlier findings that intra-meatal vestibular schwannoma may grow unseparated from adjacent nerves without duplication of the arachnoid layers. The arachnoid pillars may support and stabilize cranial nerves in the IAC and could also play a role in local fluid hydrodynamics.


Assuntos
Aracnoide-Máter/anatomia & histologia , Orelha Interna/anatomia & histologia , Imageamento Tridimensional/métodos , Osso Temporal/anatomia & histologia , Humanos , Neuroma Acústico/etiologia , Microtomografia por Raio-X/métodos
17.
Opt Lett ; 44(21): 5326-5329, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674999

RESUMO

This Letter demonstrates lithium niobate (LiNbO3)-based transparent ultrasound transducers (TUTs) for photoacoustic imaging applications. The TUTs were fabricated by coating the top and bottom surfaces of a 0.25 mm thick LiNbO3wafer with transparent indium-tin-oxide (ITO) electrodes. The resulting transducers showed ∼80% optical transparency in the wavelength range of 690-970 nm. The TUTs had a resonant frequency of 14.5 MHz and ∼70% photoacoustic bandwidth. The versatility of the TUT approach is demonstrated by introducing two different transparent photoacoustic imaging (PAI) geometries. In one method, which suits endoscopy applications, an optical fiber of a laser diode is directly fixed on the backside of a 2.5 mm diameter TUT, and the fiber-TUT device is raster scanned to form 3D photoacoustic images. In the second method, which suits high-throughput applications, a free-space optical-only raster scanning of the laser fiber across a 1 cm×1 cm planar TUT yielded 3D photoacoustic images. The proposed TUT approach is low in cost, easy to manufacture, compatible with conventional clinical ultrasound electronics, and scalable for different configurations, including 2D TUT arrays to achieve real-time 3D high-throughput PAI.

18.
J Microsc ; 273(2): 127-134, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30431166

RESUMO

OBJECTIVES: To demonstrate that synchrotron radiation phase-contrast imaging (SR-PCI) can be used to visualize the intrascalar structures in implanted human cochleae and to find the optimal combination of the parameters object-to-detector distance (ODD) and beam energy (E) for visualization. MATERIALS AND METHODS: Three cadaveric implanted human temporal bones underwent SR-PCI with varying combinations of parameters ODD (3, 2 and 1 m) and E (47, 60 and 72 keV). All images were then reconstructed to a three-dimensional (3D) stack of slices. The acquired 3D images were compared using contrast-to-noise ratios (CNRs) of the basilar membrane ( CNRBM ) and the electrode array (CNRE ) and the standard deviation of the beam streaks ( σS ). Postprocessing calculations were performed using Matlab (Version 2017b, MathWorks Inc., Natick, MA, U.S.A.) with a standard significance level p < 0.05 to determine the most optimal combination of parameters. RESULTS: SR-PCI with computed tomography reconstruction provided good visualization of the anatomical features of the implanted cochleae, specifically the exact location of the electrode with respect to the BM. A single-factor ANOVA revealed a significant difference of variance for both CNRE and CNRBM , but failed to show significance for σS . A two-sample t-test failed to show any significant difference between CNRE columns of (3 m, 72 keV) and (2 m, 60 keV). The CNRBM was significantly different only at two pairs of columns, when (1 m, 72 keV) was compared against (2 m, 72 keV) and (3 m, 72 keV). CONCLUSIONS: The results of this study show that SR-PCI is a viable method to visualize implanted human cochleae. SR-PCI is less invasive, less labour intensive and is associated with a much lower acquisition time compared to other methods for postimplantation imaging in humans, such as histological sectioning. We found that the optimal combination of E and ODD parameters was 72 keV and 2 m, respectively. These parameters resulted in high-contrast images of the electrode as well as all internal structures of the cochleae. LAY DESCRIPTION: Cochlear implants (CI) are currently the preferred method of treatment for hearing loss. Cochlear implantation surgery involves placement of a metallic, wire-shaped electrode inside the cochlea, the main organ of the human hearing system. Knowledge of the exact location of the electrode after implantation is beneficial in improving the extent of restored hearing. Common clinical imaging modalities such as computed-tomography (CT) are not ideal for providing such information, due to lack of resolution and streaking caused by the metallic electrode. Recent studies have developed algorithms to extract the electrode location from clinical computed-tomography images and have been validated using histology or micro computed-tomography (micro-CT). Synchrotron radiation phase contrast imaging (SR-PCI) is a high-resolution imaging technique used to visualize small structures in three dimensions. Recently, SR-PCI has been shown to be an alternative to histology or micro-CT for imaging the human cochlea. However, it has not been optimized for imaging implanted human cochleae. The main objective of the present work was to find the optimal organization of imaging parameters (i.e., object-to-detector distance and beam energy) for using SR-PCI to image implanted human cochleae. Three cadaveric human cochleae were imaged using five different combinations of imaging parameters at the Canadian Light Source Inc., Saskatoon, SK, Canada. The resulting images were compared both quantitatively and qualitatively. An optimal combination of parameters was found to produce high-contrast images of the both the CI electrode and all internal structures of the cochlea with minimal streaking. SR-PCI is therefore a viable alternative to histological or micro-CT studies for post-surgical imaging of implanted human cochleae.


Assuntos
Implantes Cocleares , Imageamento Tridimensional/métodos , Síncrotrons , Osso Temporal/diagnóstico por imagem , Eletrodos Implantados , Humanos , Microscopia de Contraste de Fase
19.
Ear Hear ; 40(2): 393-400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29952804

RESUMO

OBJECTIVES: The purpose of this study was to evaluate the three-dimensional (3D) anatomy and potential damage to the hook region of the human cochlea following various trajectories at cochlear implantation (CI). The goal was to determine which of the approaches can avoid lesions to the soft tissues, including the basilar membrane and its suspension to the lateral wall. Currently, there is increased emphasis on conservation of inner ear structures, even in nonhearing preservation CI surgery. DESIGN: Micro-computed tomography and various CI approaches were made in an archival collection of macerated and freshly fixed human temporal bones. Furthermore, synchrotron radiation phase-contrast imaging was used to reproduce the soft tissues. The 3D anatomy was investigated using bony and soft tissue algorithms, and influences on inner ear structures were examined. RESULTS: Micro-computed tomography with 3D rendering demonstrated the topography of the round window (RW) and osseous spiral laminae, while synchrotron imaging allowed reproduction of soft tissues such as the basilar membrane and its suspension around the RW membrane. Anterior cochleostomies and anteroinferior cochleostomies invariably damaged the intracochlear soft tissues while inferior cochleostomies sporadically left inner ear structures unaffected. CONCLUSIONS: Results suggest that cochleostomy approaches often traumatize the soft tissues at the hook region at CI surgery. For optimal structural preservation, the RW approach is, therefore, recommended.


Assuntos
Membrana Basilar/diagnóstico por imagem , Implante Coclear , Janela da Cóclea/diagnóstico por imagem , Membrana Basilar/patologia , Cadáver , Cóclea/diagnóstico por imagem , Cóclea/patologia , Implantes Cocleares , Humanos , Imageamento Tridimensional , Microscopia de Contraste de Fase , Janela da Cóclea/patologia , Síncrotrons , Microtomografia por Raio-X
20.
Sensors (Basel) ; 19(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835900

RESUMO

The opacity of conventional ultrasound transducers can impede the miniaturization and workflow of current photoacoustic systems. In particular, optical-resolution photoacoustic microscopy (OR-PAM) requires the coaxial alignment of optical illumination and acoustic-detection paths through complex beam combiners and a thick coupling medium. To overcome these hurdles, we developed a novel OR-PAM method on the basis of our recently reported transparent lithium niobate (LiNbO3) ultrasound transducer (Dangi et al., Optics Letters, 2019), which was centered at 13 MHz ultrasound frequency with 60% photoacoustic bandwidth. To test the feasibility of wearable OR-PAM, optical-only raster scanning of focused light through a transducer was performed while the transducer was fixed above the imaging subject. Imaging experiments on resolution targets and carbon fibers demonstrated a lateral resolution of 8.5 µm. Further, we demonstrated vasculature mapping using chicken embryos and melanoma depth profiling using tissue phantoms. In conclusion, the proposed OR-PAM system using a low-cost transparent LiNbO3 window transducer has a promising future in wearable and high-throughput imaging applications, e.g., integration with conventional optical microscopy to enable a multimodal microscopy platform capable of ultrasound stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA