Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102596, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257405

RESUMO

Novel vaccination strategies are crucial to efficiently control tuberculosis, as proposed by the World Health Organization under its flagship program "End TB Strategy." However, the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), particularly in those coinfected with HIV-AIDS, constitutes a major impediment to achieving this goal. We report here a novel vaccination strategy that involves synthesizing a formulation of an immunodominant peptide derived from the Acr1 protein of Mtb. This nanoformulation in addition displayed on the surface a toll-like receptor-2 ligand to offer to target dendritic cells (DCs). Our results showed an efficient uptake of such a concoction by DCs in a predominantly toll-like receptor-2-dependent pathway. These DCs produced elevated levels of nitric oxide, proinflammatory cytokines interleukin-6, interleukin-12, and tumor necrosis factor-α, and upregulated the surface expression of major histocompatibility complex class II molecules as well as costimulatory molecules such as CD80 and CD86. Animals injected with such a vaccine mounted a significantly higher response of effector and memory Th1 cells and Th17 cells. Furthermore, we noticed a reduction in the bacterial load in the lungs of animals challenged with aerosolized live Mtb. Therefore, our findings indicated that the described vaccine triggered protective anti-Mtb immunity to control the tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Células Dendríticas , Epitopos , Ligantes , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Camundongos
2.
BMC Infect Dis ; 20(1): 677, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32942991

RESUMO

BACKGROUND: Approximately 80% - 90% of individuals infected with latent Mycobacterium tuberculosis (Mtb) remain protected throughout their life-span. The release of unique, latent-phase antigens are known to have a protective role in the immune response against Mtb. Although the BCG vaccine has been administered for nine decades to provide immunity against Mtb, the number of TB cases continues to rise, thereby raising doubts on BCG vaccine efficacy. The shortcomings of BCG have been associated with inadequate processing and presentation of its antigens, an inability to optimally activate T cells against Mtb, and generation of regulatory T cells. Furthermore, BCG vaccination lacks the ability to eliminate latent Mtb infection. With these facts in mind, we selected six immunodominant CD4 and CD8 T cell epitopes of Mtb expressed during latent, acute, and chronic stages of infection and engineered a multi-epitope-based DNA vaccine (C6). RESULT: BALB/c mice vaccinated with the C6 construct along with a BCG vaccine exhibited an expansion of both CD4 and CD8 T cell memory populations and augmented IFN-γ and TNF-α cytokine release. Furthermore, enhancement of dendritic cell and macrophage activation was noted. Consequently, illustrating the elicitation of immunity that helps in the protection against Mtb infection; which was evident by a significant reduction in the Mtb burden in the lungs and spleen of C6 + BCG administered animals. CONCLUSION: Overall, the results suggest that a C6 + BCG vaccination approach may serve as an effective vaccination strategy in future attempts to control TB.


Assuntos
Vacina BCG/imunologia , Epitopos de Linfócito T , Tuberculose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Antígenos de Bactérias/imunologia , Vacina BCG/genética , Vacina BCG/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Feminino , Memória Imunológica , Interferon gama/metabolismo , Tuberculose Latente/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vacinas de DNA/farmacologia
3.
Crit Rev Microbiol ; 43(2): 133-141, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27800700

RESUMO

T-cells play an important role in immunity but when these cells are overexposed to specific antigens, their function may decline. This state is usually referred to as exhaustion and the T-cells show reduced proliferation and functions such as cytokine release. T-cell exhaustion has been observed in several cancers as well as in chronic infections such as tuberculosis (TB). In chronic Mycobacterium tuberculosis (Mtb) infection, T-cells may express the exhaustion phenotype and show a progressive loss of secretion of IL-2, IFN-γ and TNF-α. In some cancers and chronic infection models, blocking the exhaustion phenotype can be achieved with the so-called checkpoint inhibitors. This results in tumor control and more effective immunity. However, in the case of TB, the T-cell exhaustion results are quite ambiguous. Hence, there is a need to investigate and explain the contribution of checkpoint at a molecular level to the outcome of events in chronic TB. Such information could help to guide the success of new therapies against chronic TB. This review highlights the mechanism through which T-cells undergo exhaustion and the approaches that can avert such events. This will help to design immunotherapies that can reinvigorate T-cell potency to protect patients from TB.


Assuntos
Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Tuberculose/patologia
4.
Gut Microbes ; 15(2): 2290643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087439

RESUMO

Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.


Assuntos
Microbioma Gastrointestinal , Pneumopatias , Idoso , Humanos , Disbiose , Imunidade Inata , Células Dendríticas
5.
Vaccines (Basel) ; 10(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891168

RESUMO

The Bacille Calmette-Guérin or BCG vaccine, the only vaccine available against Mycobacterium tuberculosis can induce a marked Th1 polarization of T-cells, characterized by the antigen-specific secretion of IFN-γ and enhanced antiviral response. A number of studies have supported the concept of protection by non-specific boosting of immunity by BCG and other microbes. BCG is a well-known example of a trained immunity inducer since it imparts 'non-specific heterologous' immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the recent pandemic. SARS-CoV-2 continues to inflict an unabated surge in morbidity and mortality around the world. There is an urgent need to devise and develop alternate strategies to bolster host immunity against the coronavirus disease of 2019 (COVID-19) and its continuously emerging variants. Several vaccines have been developed recently against COVID-19, but the data on their protective efficacy remains doubtful. Therefore, urgent strategies are required to enhance system immunity to adequately defend against newly emerging infections. The concept of trained immunity may play a cardinal role in protection against COVID-19. The ability of trained immunity-based vaccines is to promote heterologous immune responses beyond their specific antigens, which may notably help in defending against an emergency situation such as COVID-19 when the protective ability of vaccines is suspicious. A growing body of evidence points towards the beneficial non-specific boosting of immune responses by BCG or other microbes, which may protect against COVID-19. Clinical trials are underway to consider the efficacy of BCG vaccination against SARS-CoV-2 on healthcare workers and the elderly population. In this review, we will discuss the role of BCG in eliciting trained immunity and the possible limitations and challenges in controlling COVID-19 and future pandemics.

6.
Crit Rev Microbiol ; 37(4): 349-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21919701

RESUMO

Heat shock proteins (HSPs) are conserved and ubiquitous house keeping entities that act as molecular chaperones, which protect the cell from damage during stress. One such HSP, the 16 kDa antigen, from Mycobacterium tuberculosis (Mtb) has received considerable attention due to its importance in tuberculosis latency and immunodominant property. In this article, we discuss about the potential role of 16 kDa antigen of Mtb in latency, its expression, regulation, and implication in host immune response. We also highlight the scope of employing 16 kDa in early diagnosis, development of vaccine and as a potential drug target.


Assuntos
Antígenos de Bactérias/fisiologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Animais , Antígenos de Bactérias/imunologia , Humanos , Tuberculose/diagnóstico , Tuberculose/terapia , Vacinas contra a Tuberculose/química , Vacinas contra a Tuberculose/farmacologia
7.
Front Cell Infect Microbiol ; 11: 669168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307192

RESUMO

For a long time, tuberculosis (TB) has been inflicting mankind with the highest morbidity and mortality. Although the current treatment is extremely potent, a few bacilli can still hide inside the host mesenchymal stem cells (MSC). The functional capabilities of MSCs are known to be modulated by TLRs, NOD-2, and RIG-1 signaling. Therefore, we hypothesize that modulating the MSC activity through TLR-4 and NOD-2 can be an attractive immunotherapeutic strategy to eliminate the Mtb hiding inside these cells. In our current study, we observed that MSC stimulated through TLR-4 and NOD-2 (N2.T4) i) activated MSC and augmented the secretion of pro-inflammatory cytokines; ii) co-localized Mtb in the lysosomes; iii) induced autophagy; iv) enhanced NF-κB activity via p38 MAPK signaling pathway; and v) significantly reduced the intracellular survival of Mtb in the MSC. Overall, the results suggest that the triggering through N2.T4 can be a future method of immunotherapy to eliminate the Mtb concealed inside the MSC.


Assuntos
Células-Tronco Mesenquimais , Mycobacterium tuberculosis , Tuberculose , Humanos , Proteína Adaptadora de Sinalização NOD2 , Transdução de Sinais , Receptor 4 Toll-Like
8.
ACS Infect Dis ; 7(11): 2999-3008, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613696

RESUMO

Tuberculosis (TB) treatment is lengthy and inflicted with severe side-effects. Here, we attempted a novel strategy to reinforce host immunity through NOD-like receptor (NOD-2) and Toll-like receptor (TLR-4) signaling in the murine model of TB. Intriguingly, we noticed that it not only bolstered the immunity but also reduced the dose and duration of rifampicin and isoniazid therapy. Further, we observed expansion in the pool of effector (CD44hi, CD62Llo, CD127hi) and central (CD44hi, CD62Lhi, CD127hi) memory CD4 T cells and CD8 T cells and increased the intracellular killing of Mycobacterium tuberculosis (Mtb) by activated dendritic cells [CD86hi, CD40hi, IL-6hi, IL-12hi, TNF-αhi, nitric oxide (NO)hi] with significant reduction in Mtb load in the lungs and spleen of infected animals. We infer that the signaling through NOD-2 and TLR-4 may be an important approach to reduce the dose and duration of the drugs to treat TB.


Assuntos
Mycobacterium tuberculosis , Proteína Adaptadora de Sinalização NOD2 , Receptor 4 Toll-Like , Animais , Antituberculosos/farmacologia , Imunoterapia , Camundongos , Proteína Adaptadora de Sinalização NOD2/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptores Toll-Like
9.
Autoimmunity ; 50(5): 317-328, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28686480

RESUMO

Multiple sclerosis (MS) is a highly detrimental autoimmune disease of the central nervous system. There is no cure for it but the treatment typically focuses on subsiding severity and recurrence of the disease. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. It is characterized by frequent relapses due to the generation of memory T cells. Caerulomycin A (CaeA) is known to suppress the Th1 cells, Th2 cells, and Th17 cells. Interestingly, it enhances the generation of regulatory T cells (Tregs). Th1 cells and Th17 cells are known to aggravate EAE, whereas Tregs suppress the disease symptoms. Consequently, in the current study we evaluated the influence of CaeA on EAE. Intriguingly, we observed by whole body imaging that CaeA regressed the clinical symptoms of EAE. Further, there was reduction in the pool of Th1 cells, Th17 cells, and CD8 T cells. The mechanism involved in suppressing the EAE symptoms was due to the inhibition in the generation of effector and central memory T cells and induction of the expansion of Tregs. In essence, these findings implicate that CaeA may be considered as a potent future immunosuppressive drug.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/imunologia , Imunossupressores/farmacologia , Piridinas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Biomarcadores , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Memória Imunológica , Imunofenotipagem , Camundongos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Fenótipo , Subpopulações de Linfócitos T , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA