Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Divers ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904907

RESUMO

Skeletal muscle (SM) contains a diverse population of muscle stem (or satellite) cells, which are essential for the maintenance of muscle tissue and positively regulated by prostaglandin E2 (PGE2). However, in aged SM, PGE2 levels are reduced due to increased prostaglandin catabolism by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a negative regulator of SM tissue repair and regeneration. Screening of a library of 80,617 natural compounds in the ZINC database against 15-PGDH was conducted from PyRx. Further, drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge were performed. The selected complex was forwarded for MD simulations up to 100ns. Based on free energy of binding obtained from docking revealed that ZINC14557836 and ZINC14638400 more potently inhibiting to 15-PGDH than SW033291 (the control and high-affinity inhibitor of 15-PGDH). The free energies of binding obtained from PyRx for 15-PGDH-ZINC14557836, 15-PGDH-ZINC14638400, and 15-PGDH-SW033291 complexes were - 10.30, -9.80, and - 8.0 kcal/mol, respectively. Root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), radii of gyration (Rg), solvent-accessible surface areas (SASAs), and H-bond parameters obtained by 100 ns MD simulations predicted ZINC14557836 and ZINC14638400 more stably complexed with 15-PGDH than SW033291. The several parameters, including physicochemical properties and drug-likenesses, were within acceptable limits, and ZINC14557836 and ZINC14638400 also satisfied other drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge. These findings suggest that ZINC14557836 and ZINC14638400 provide starting points for the development of medications that increase SM regeneration and muscle stem (or satellite) cell numbers by inhibiting 15-PGDH.

2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139116

RESUMO

Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.


Assuntos
Diabetes Mellitus , Doenças Neurodegenerativas , Panax , Humanos , Obesidade , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico
3.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 106-114, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809297

RESUMO

Alzheimer's disease is a chronic neurodegenerative ailment and the most familiar type of dementia in the older population with no effective cure to date. It is characterized by a decrease in memory, associated with the mutilation of cholinergic neurotransmission. Presently, acetylcholinesterase inhibitors have emerged as the most endorsed pharmacological medications for the symptomatic treatment of mild to moderate Alzheimer's disease. This study aimed to research the molecular enzymatic inhibition of human brain acetylcholinesterase by a natural compound emetine and I3M. Molecular docking studies were used to identify superior interaction between enzyme acetylcholinesterase and ligands. Furthermore, the docked acetylcholinesterase-emetine complex was validated statistically using an analysis of variance in all tested conformers. In this interaction, H-bond, hydrophobic interaction, pi-pi, and Cation-pi interactions played a vital function in predicting the accurate conformation of the ligand that binds with the active site of acetylcholinesterase. The conformer with the lowest free energy of binding was further analyzed. The binding energy for acetylcholinesterase complex with emetine and I3M was -9.72kcal/mol and -7.09kcal/mol, respectively. In the current study, the prediction was studied to establish a relationship between binding energy and intermolecular energy (coefficient of determination [R2 linear = 0.999), and intermolecular energy and Van der wall forces (R2 linear = 0.994). These results would be useful in gaining structural insight for designing novel lead compounds against acetylcholinesterase for the effective management of Alzheimer's disease.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Emetina/química , Emetina/metabolismo , Humanos , Indóis , Ligantes , Simulação de Acoplamento Molecular
4.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457038

RESUMO

The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers. MIF1 and MIF2 were designed based on in silico interaction studies between MSTN and its receptor, activin type IIB receptor (ACVRIIB), and fibromodulin (FMOD). Of the different modifications of MIF1 and MIF2 examined, Ac-MIF1 and Ac-MIF2-NH2 significantly enhanced cell proliferation and differentiation as compared with non-modified peptides. Mice pretreated with Ac-MIF1 or Ac-MIF2-NH2 prior to cardiotoxin-induced muscle injury showed more muscle regeneration than non-pretreated controls, which was attributed to the induction of myogenic genes and reduced MSTN expression. These findings imply that Ac-MIF1 and Ac-MIF2-NH2 might be valuable therapeutic agents for the treatment of muscle-related diseases.


Assuntos
Doenças Musculares , Miostatina , Animais , Fibromodulina/metabolismo , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculos/metabolismo , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo , Miostatina/genética , Miostatina/metabolismo , Peptídeos/metabolismo
5.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807547

RESUMO

Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues.


Assuntos
Medicina Tradicional Chinesa , Doenças Musculares/tratamento farmacológico , Miostatina/antagonistas & inibidores , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Simulação de Dinâmica Molecular , Desenvolvimento Muscular/efeitos dos fármacos , Doenças Musculares/fisiopatologia , Ligação Proteica
6.
Bioorg Chem ; 107: 104626, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450545

RESUMO

Vincamine, a well-known plant alkaloid, has been used as a dietary supplement and as a peripheral vasodilator to combat aging in humans. In this study, for the very first time, we demonstrated that vincamine can function as an anticancer agent in a human alveolar basal epithelial cell line A549 (IC50 = 309.7 µM). The anticancer potential of vincamine in A549 cells was assessed by molecular assays to determine cell viability, generation of intracellular ROS, nuclear condensation, caspase-3 activity and inhibition, and change in mitochondrial membrane potential (ΔΨm). In silico studies predicted that the anti-proliferative potential of vincamine is enhanced by its interaction with the apoptotic protein caspase-3, and that this interaction is driven by two hydrogen bonds and has a high free energy of binding (-5.64 kcal/mol) with an estimated association constant (Ka) of 73.67 µM. We found that vincamine stimulated caspase-3-dependent apoptosis and lowered mitochondrial membrane potential, which ultimately led to cytochrome C release. Vincamine was also found to quench hydroxyl free radicals and deplete iron ions in cancer cells. As a dietary supplement, vincamine is almost non-toxic in BEAS-2B and 3T3-L1 cells. Therefore, we propose that vincamine represents a safe anticancer agent in lung cancer cells. Its role in other cancers has yet to be explored.


Assuntos
Antineoplásicos/química , Células A549 , Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caspase 3/química , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica , Vincamina/química , Vincamina/farmacologia
7.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467209

RESUMO

Skeletal muscle is the most abundant tissue and constitutes about 40% of total body mass. Herein, we report that crude water extract (CWE) of G. uralensis enhanced myoblast proliferation and differentiation. Pretreatment of mice with the CWE of G. uralensis prior to cardiotoxin-induced muscle injury was found to enhance muscle regeneration by inducing myogenic gene expression and downregulating myostatin expression. Furthermore, this extract reduced nitrotyrosine protein levels and atrophy-related gene expression. Of the five different fractions of the CWE of G. uralensis obtained, the ethyl acetate (EtOAc) fraction more significantly enhanced myoblast proliferation and differentiation than the other fractions. Ten bioactive compounds were isolated from the EtOAc fraction and characterized by GC-MS and NMR. Of these compounds (4-hydroxybenzoic acid, liquiritigenin, (R)-(-)-vestitol, isoliquiritigenin, medicarpin, tetrahydroxymethoxychalcone, licochalcone B, liquiritin, liquiritinapioside, and ononin), liquiritigenin, tetrahydroxymethoxychalcone, and licochalcone B were found to enhance myoblast proliferation and differentiation, and myofiber diameters in injured muscles were wider with the liquiritigenin than the non-treated one. Computational analysis showed these compounds are non-toxic and possess good drug-likeness properties. These findings suggest that G. uralensis-extracted components might be useful therapeutic agents for the management of muscle-associated diseases.


Assuntos
Glycyrrhiza uralensis/química , Atrofia Muscular/tratamento farmacológico , Extratos Vegetais/química , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Chalconas/química , Chalconas/farmacologia , Chalconas/uso terapêutico , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miostatina/genética , Miostatina/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500839

RESUMO

The skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia. Sequential screening of 2000 natural compounds was performed, and dithymoquinone (DTQ) was found to inhibit MSTN with a binding free energy of -7.40 kcal/mol. Furthermore, the docking results showed that DTQ reduced the binding interaction between MSTN and its receptor, activin receptor type-2B (ActR2B). The global energy of MSTN-ActR2B was found to be reduced from -47.75 to -40.45 by DTQ. The stability of the DTQ-MSTN complex was subjected to a molecular dynamics analysis for up to 100 ns to check the stability of the complex using RMSD, RMSF, Rg, SASA, and H-bond number. The complex was found to be stable after 10 ns to the end of the simulation. These results suggest that DTQ blocks MSTN signaling through ActR2B and that it has potential use as a muscle growth-promoting agent during the aging process.


Assuntos
Benzoquinonas/química , Doenças Musculares/metabolismo , Miostatina/antagonistas & inibidores , Sarcopenia/metabolismo , Receptores de Activinas Tipo II/metabolismo , Sequência de Aminoácidos , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Simulação de Dinâmica Molecular , Fibras Musculares Esqueléticas , Doenças Musculares/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Transdução de Sinais
9.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946559

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and is characterized by irreversible and progressive neurodegeneration. Cholinergic dysfunction has been reported in AD, and several cholinesterase inhibitors, including natural compounds and synthetic analogs, have been developed to treat the disease. However, there is currently no treatment for AD, as most drug-like compounds have failed in clinical trials. Acetylcholinesterase (AChE) is the target of most drugs used commercially to treat AD. This work focused on screening natural compounds obtained from the ZINC database (224, 205 compounds) against AChE to identify those possibly capable of enabling the management of AD. Indirubin and dehydroevodiamine were the best potential AChE inhibitors with free binding energies of -10.03 and -9.00 kcal/mol, respectively. The key residue (His447) of the active site of AChE was found to participate in complex interactions with these two molecules. Six H-bonds were involved in the 'indirubin-AChE' interaction and three H-bonds in the 'dehydroevodiamine-AChE' interaction. These compounds were predicted to cross the blood-brain barrier (BBB) and to exhibit high levels of intestinal absorption. Furthermore, 'indirubin-AChE' and 'dehydroevodiamine-AChE' complexes were found to be stable, as determined by root mean square deviation (RMSD) during a 50 ns molecular dynamics simulation study. Based on the free binding energies and stabilities obtained by simulation studies, we recommend that experimental studies be undertaken on indirubin and dehydroevodiamine with a view towards their potential use as treatments for AD.


Assuntos
Acetilcolinesterase/química , Produtos Biológicos/química , Inibidores da Colinesterase/química , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doença de Alzheimer/tratamento farmacológico , Sítios de Ligação , Produtos Biológicos/farmacologia , Inibidores da Colinesterase/farmacologia , Bases de Dados de Produtos Farmacêuticos , Humanos , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
10.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499241

RESUMO

The Food and Drug Administration (FDA) approved a new class of anti-diabetic medication (a sodium-glucose co-transporter 2 (SGLT2) inhibitor) in 2013. However, SGLT2 inhibitor drugs are under evaluation due to their associative side effects, such as urinary tract and genital infection, urinary discomfort, diabetic ketosis, and kidney problems. Even clinicians have difficulty in recommending it to diabetic patients due to the increased probability of urinary tract infection. In our study, we selected natural SGLT2 inhibitors, namely acerogenin B, formononetin, (-)-kurarinone, (+)-pteryxin, and quinidine, to explore their potential against an emerging uropathogenic bacterial therapeutic target, i.e., FimH. FimH plays a critical role in the colonization of uropathogenic bacteria on the urinary tract surface. Thus, FimH antagonists show promising effects against uropathogenic bacterial strains via their targeting of FimH's adherence mechanism with less chance of resistance. The molecular docking results showed that, among natural SGLT2 inhibitors, formononetin, (+)-pteryxin, and quinidine have a strong interaction with FimH proteins, with binding energy (∆G) and inhibition constant (ki) values of -5.65 kcal/mol and 71.95 µM, -5.50 kcal/mol and 92.97 µM, and -5.70 kcal/mol and 66.40 µM, respectively. These interactions were better than those of the positive control heptyl α-d-mannopyranoside and far better than those of the SGLT2 inhibitor drug canagliflozin. Furthermore, a 50 ns molecular dynamics simulation was conducted to optimize the interaction, and the resulting complexes were found to be stable. Physicochemical property assessments predicted little toxicity and good drug-likeness properties for these three compounds. Therefore, formononetin, (+)-pteryxin, and quinidine can be proposed as promising SGLT2 inhibitors drugs, with add-on FimH inhibition potential that might reduce the probability of uropathogenic side effects.


Assuntos
Adesinas de Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Proteínas de Fímbrias/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Infecções Urinárias/prevenção & controle , Escherichia coli Uropatogênica/efeitos dos fármacos , Adesinas de Escherichia coli/química , Biologia Computacional , Simulação por Computador , Cumarínicos/química , Cumarínicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Infecções por Escherichia coli/etiologia , Proteínas de Fímbrias/química , Humanos , Isoflavonas/química , Isoflavonas/farmacologia , Simulação de Acoplamento Molecular , Quinidina/química , Quinidina/farmacologia , Transportador 2 de Glucose-Sódio/química , Inibidores do Transportador 2 de Sódio-Glicose/química , Infecções Urinárias/etiologia , Escherichia coli Uropatogênica/patogenicidade
11.
Molecules ; 25(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365525

RESUMO

Alzheimer's disease (AD) is the most common type of dementia and usually manifests as diminished episodic memory and cognitive functions. Caspases are crucial mediators of neuronal death in a number of neurodegenerative diseases, and caspase 8 is considered a major therapeutic target in the context of AD. In the present study, we performed a virtual screening of 200 natural compounds by molecular docking with respect to their abilities to bind with caspase 8. Among them, rutaecarpine was found to have the highest (negative) binding energy (-6.5 kcal/mol) and was further subjected to molecular dynamics (MD) simulation analysis. Caspase 8 was determined to interact with rutaecarpine through five amino acid residues, specifically Thr337, Lys353, Val354, Phe355, and Phe356, and two hydrogen bonds (ligand: H35-A: LYS353:O and A:PHE355: N-ligand: N5). Furthermore, a 50 ns MD simulation was conducted to optimize the interaction, to predict complex flexibility, and to investigate the stability of the caspase 8-rutaecarpine complex, which appeared to be quite stable. The obtained results propose that rutaecarpine could be a lead compound that bears remarkable anti-Alzheimer's potential against caspase 8.


Assuntos
Caspase 8/química , Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Sítios de Ligação , Fenômenos Químicos , Humanos , Ligação de Hidrogênio , Ligantes , Ligação Proteica
12.
Molecules ; 24(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491967

RESUMO

Alzheimer's disease (AD) is a widespread dynamic neurodegenerative malady. Its etiology is still not clear. One of the foremost pathological features is the extracellular deposits of Amyloid-beta (Aß) peptides in senile plaques. The interaction of Aß and the receptor for advanced glycation end products at the blood-brain barrier is also observed in AD, which not only causes the neurovascular anxiety and articulation of proinflammatory cytokines, but also directs reduction of cerebral bloodstream by upgrading the emission of endothelin-1 to induce vasoconstriction. In this process, RAGE is deemed responsible for the influx of Aß into the brain through BBB. In the current study, we predicted the interaction potential of the natural compounds vincamine, ajmalicine and emetine with the Aß peptide concerned in the treatment of AD against the standard control, curcumin, to validate the Aß peptide-compounds results. Protein-protein interaction studies have also been carried out to see their potential to inhibit the binding process of Aß and RAGE. Moreover, the current study verifies that ligands are more capable inhibitors of a selected target compared to positive control with reference to ΔG values. The inhibition of Aß and its interaction with RAGE may be valuable in proposing the next round of lead compounds for effective Alzheimer's disease treatment.


Assuntos
Peptídeos beta-Amiloides/química , Produtos Biológicos/química , Modelos Moleculares , Doença de Alzheimer , Aminoácidos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/antagonistas & inibidores , Proteínas Amiloidogênicas/química , Sítios de Ligação , Produtos Biológicos/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
13.
Heliyon ; 10(3): e24942, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317977

RESUMO

Skeletal muscle (SM) is a highly plastic and dynamic tissue of the body and is largely responsible for body maintenance. SM is primarily responsible for body balance, movement, postural support, thermogenesis, and blood glucose homeostasis. SM regeneration depends on the activation of muscle satellite (stem) cells (MSCs) under the regulation of several muscle regulatory factors that regulate myogenesis. Bibliometric analysis involves the quantitative and qualitative assessments of research and scientific progress that provides researchers access to recent publications, research directions, and thus generates ideas that can be implemented to guide future research. In this analysis, the Web of Science database was searched for articles using the search term "skeletal muscle AND myogenesis AND muscle satellite cell", and 1777 articles (original research/review articles) published from the year 1997 to June 2023 were retrieved. After applying several other exclusion and inclusion criteria, 129 articles were considered for analysis. Types of research, keywords, journals, authors, years, institutions, funding agencies, and average annual citations were analyzed. Muscle regeneration, satellite cell, and myogenesis were often used keywords and exhibited increasing trends in research articles over the decades. Some journals were found to strongly support research publications with high impact factors and citation scores. This study aimed to examine research ideas and growth in the skeletal muscle related field for atrophy and aging improvement.

14.
J Ginseng Res ; 48(1): 12-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223826

RESUMO

Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

15.
Int J Biol Macromol ; 267(Pt 2): 131411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588841

RESUMO

Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.


Assuntos
Materiais Biocompatíveis , Músculo Esquelético , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Humanos , Materiais Biocompatíveis/química , Substâncias Macromoleculares/química , Músculo Esquelético/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Curr Res Food Sci ; 8: 100678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298827

RESUMO

Cultured meat (CM) is an alternative protein food and is produced by cultivating muscle satellite (stem) cells (MSCs) derived from livestock animals (bovine, chickens, and porcine) through myogenesis leading to generate muscle mass. Myostatin (MSTN) is well well-known negative regulator of myogenesis, and in the present study, in silico screening of natural compounds was performed to identify MSTN inhibitors. Interestingly, quercetin was found to inhibit MSTN (binding energy -7.40 kcal/mol), and this was further validated by a 100 ns molecular dynamics simulation. Quercetin was added to culture media to boost myogenesis, and its potent antioxidant property helped maintain media pH. Furthermore, quercetin increased the myotube thickness and length, increased MSC differentiation, and upregulated the gene and protein expressions of myoblast determination protein 1 (MYOD), Myogenin (MYOG), and Myosin heavy chains (MYH) in vitro. In addition, quercetin inhibited the activities of MSTN, activin receptor type-2B (ACVR2B), and SMAD2 and 3, and thus significantly enhanced MSC differentiation and myotube formation. Overall, this study shows that quercetin might be useful for enhancing large-scale CM production. It is hoped that this study provides a starting point for research in the CM area aimed to enhancing product quality, nutritional values, and the efficacy of large-scale production.

17.
Biomed Pharmacother ; 168: 115642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812896

RESUMO

Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways. This review briefly discusses SM myogenesis and the critical roles that SM plays in insulin resistance and T2D. The pharmacological targets of T2D which are associated with SM metabolism, such as DPP4, PTB1B, SGLT, PPARγ, and GLP-1R, and their potential modulators/inhibitors, especially natural compounds, are discussed in detail. This review highlights the significance of SM in metabolic disorders and the therapeutic potential of natural compounds in targeting SM-associated T2D targets. It may provide novel insights for the future development of anti-diabetic drug therapies. We believe that scientists working on T2D therapies will benefit from this review by enhancing their knowledge and updating their understanding of the subject.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo
18.
Inflamm Regen ; 43(1): 58, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008778

RESUMO

The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.

19.
J Anim Sci Technol ; 65(1): 16-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37093925

RESUMO

Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-ß), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-ß1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35975855

RESUMO

BACKGROUND: The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategy has yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design. METHOD: In this study, we performed structure-based virtual screening of FDA drugs approved during the period 2015-2019 (total 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.2. We report the top ten drugs that outperform the reported drugs against 3CLP (Elbasvir and Nelfinavir), particularly Cefiderocol having the highest affinity among the compounds tested, with a binding energy of -9.97 kcal/mol. H-bond (LYS102:HZ2-ligand:O49), hydrophobic (ligand-VAL104), and electrostatic (LYS102:NZ-ligand:O50) interactions were observed in cefiderocol-3CLP complex. The docked complex was subjected to a 50 ns molecular dynamics study to check its stability, and stable RMSD and RMSF graphs were observed. RESULT: Accordingly, we suggest cefiderocol might be effective against SARS-CoV-2 and urge that experimental validation to be performed to determine the antiviral efficacy of cefiderocol against SARS-CoV-2. DISCUSSION: Along with these, cefiderocol is effective for the treatment of respiratory tract pathogens and wide range of gram-negative bacteria for whom there are limited therapeutic alternatives. CONCLUSION: The aim of this article was to explore the FDA approved drugs as repurposing study against 3CLP for COVID-19 management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA