Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Angew Chem Int Ed Engl ; 61(18): e202115193, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35170181

RESUMO

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design. We describe the de novo combination of different 5-membered NP-derived N-heteroatom fragments to structurally unprecedented "pseudo-natural products" in an efficient complexity-generating and enantioselective one-pot synthesis sequence. The pseudo-NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP-derived chemotypes, and may have novel biological targets. Investigation of the pseudo-NPs in unbiased phenotypic assays and target identification led to the discovery of the first small-molecule ligand of the RHO GDP-dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP-bound RHO GTPases and alters the subcellular localization of RHO GTPases.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Ligantes , Proteínas rho de Ligação ao GTP , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
2.
Am J Hum Genet ; 102(2): 309-320, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394990

RESUMO

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Heterogeneidade Genética , Atrofia Muscular/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Síndrome de Noonan/genética , Proteína cdc42 de Ligação ao GTP/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Modelos Moleculares , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Estrutura Secundária de Proteína , Índice de Gravidade de Doença , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830380

RESUMO

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


Assuntos
Prenilação/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/química , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/química , Sequência de Aminoácidos/genética , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Cinética , Eletricidade Estática , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/genética
4.
Gut ; 69(1): 133-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409605

RESUMO

OBJECTIVE: The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN: Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS: Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS: We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hepatite Viral Animal/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Morte Celular/fisiologia , Células Cultivadas , Colestase/imunologia , Colestase/metabolismo , Colestase/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hepatite Viral Animal/patologia , Hepatite Viral Animal/prevenção & controle , Hepatócitos/patologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Vírus da Coriomeningite Linfocítica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
5.
Biochem Soc Trans ; 46(6): 1393-1406, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30381334

RESUMO

RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein-protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas A-raf/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/genética
6.
Cell Commun Signal ; 16(1): 96, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518391

RESUMO

BACKGROUND: Human pluripotent stem cells (PSCs) open new windows for basic research and regenerative medicine due to their remarkable properties, i.e. their ability to self-renew indefinitely and being pluripotent. There are different, conflicting data related to the role of basic fibroblast growth factor (bFGF) in intracellular signal transduction and the regulation of pluripotency of PSCs. Here, we investigated the effect of bFGF and its downstream pathways in pluripotent vs. differentiated human induced (hi) PSCs. METHODS: bFGF downstream signaling pathways were investigated in long-term culture of hiPSCs from pluripotent to differentiated state (withdrawing bFGF) using immunoblotting, immunocytochemistry and qPCR. Subcellular distribution of signaling components were investigated by simple fractionation and immunoblotting upon bFGF stimulation. Finally, RAS activity and RAS isoforms were studied using RAS assays both after short- and long-term culture in response to bFGF stimulation. RESULTS: Our results revealed that hiPSCs were differentiated into the ectoderm lineage upon withdrawing bFGF as an essential pluripotency mediator. Pluripotency markers OCT4, SOX2 and NANOG were downregulated, following a drastic decrease in MAPK pathway activity levels. Notably, a remarkable increase in phosphorylation levels of p38 and JAK/STAT3 was observed in differentiated hiPSCs, while the PI3K/AKT and JNK pathways remained active during differentiation. Our data further indicate that among the RAS paralogs, NRAS predominantly activates the MAPK pathway in hiPSCs. CONCLUSION: Collectively, the MAPK pathway appears to be the prime signaling pathway downstream of bFGF for maintaining pluripotency in hiPSCs and among the MAPK pathways, the activity of NRAS-RAF-MEK-ERK is decreased during differentiation, whereas p38 is activated and JNK remains constant.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Biol Chem ; 290(25): 15892-15903, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25940089

RESUMO

E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features.


Assuntos
Proteína Oncogênica p21(ras)/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cães , Humanos , Células Madin Darby de Rim Canino , Proteína Oncogênica p21(ras)/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Homologia de Sequência de Aminoácidos
8.
Proc Natl Acad Sci U S A ; 110(51): 20795-800, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297911

RESUMO

In many brain regions, gephyrin and GABAA receptor clustering at developing inhibitory synapses depends on the guanine nucleotide exchange factor collybistin (Cb). The vast majority of Cb splice variants contain an autoinhibitory src homology 3 domain, and several synaptic proteins are known to bind to this SH3 domain and to thereby activate gephyrin clustering. However, many functional GABAergic synapses form independently of the known Cb-activating proteins, indicating that additional Cb activators must exist. Here we show that the small Rho-like GTPase TC10 stimulates Cb-dependent gephyrin clustering by binding in its active, GTP-bound state to the pleckstrin homology domain of Cb. Overexpression of a constitutively active TC10 variant in neurons causes an increase in the density of synaptic gephyrin clusters and mean miniature inhibitory postsynaptic current amplitudes, whereas a dominant negative TC10 variant has opposite effects. The enhancement of Cb-induced gephyrin clustering by GTP-TC10 does not depend on the guanine nucleotide exchange activity of Cb but involves an interaction that resembles reported interactions of other small GTPases with their effectors. Our data indicate that GTP-TC10 activates the major src homology 3 domain-containing Cb variants by relieving autoinhibition and thus define an alternative GTPase-driven signaling pathway in the genesis of inhibitory synapses.


Assuntos
Proteínas de Transporte/metabolismo , Neurônios GABAérgicos/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Potenciais Sinápticos/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Neurônios GABAérgicos/citologia , Guanosina Trifosfato/genética , Hipocampo/citologia , Humanos , Proteínas de Membrana/genética , Densidade Pós-Sináptica/genética , Estrutura Terciária de Proteína , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rho de Ligação ao GTP/genética
10.
Hum Mol Genet ; 22(2): 262-70, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23059812

RESUMO

Activating somatic and germline mutations of closely related RAS genes (H, K, N) have been found in various types of cancer and in patients with developmental disorders, respectively. The involvement of the RAS signalling pathways in developmental disorders has recently emerged as one of the most important drivers in RAS research. In the present study, we investigated the biochemical and cell biological properties of two novel missense KRAS mutations (Y71H and K147E). Both mutations affect residues that are highly conserved within the RAS family. KRAS(Y71H) showed no clear differences to KRAS(wt), except for an increased binding affinity for its major effector, the RAF1 kinase. Consistent with this finding, even though we detected similar levels of active KRAS(Y71H) when compared with wild-type protein, we observed an increased activation of MEK1/2, irrespective of the stimulation conditions. In contrast, KRAS(K147E) exhibited a tremendous increase in nucleotide dissociation generating a self-activating RAS protein that can act independently of upstream signals. As a consequence, levels of active KRAS(K147E) were strongly increased regardless of serum stimulation and similar to the oncogenic KRAS(G12V). In spite of this, KRAS(K147E) downstream signalling did not reach the level triggered by oncogenic KRAS(G12V), especially because KRAS(K147E) was downregulated by RASGAP and moreover exhibited a 2-fold lower affinity for RAF kinase. Here, our findings clearly emphasize that individual RAS mutations, despite being associated with comparable phenotypes of developmental disorders in patients, can cause remarkably diverse biochemical effects with a common outcome, namely a rather moderate gain-of-function.


Assuntos
Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Linhagem Celular , Fácies , Humanos , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Transdução de Sinais , Proteínas ras/química
11.
J Biol Chem ; 288(6): 4486-500, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23255595

RESUMO

The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas Proto-Oncogênicas , Proteínas rho de Ligação ao GTP , Animais , Catálise , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/classificação , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/classificação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de Proteína/métodos , Relação Estrutura-Atividade , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/classificação , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
12.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672417

RESUMO

Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.


Assuntos
Nucléolo Celular , Citosol , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Nucléolo Celular/metabolismo , Citosol/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Animais , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Processamento de Proteína Pós-Traducional
13.
Cell Rep ; 43(7): 114448, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003740

RESUMO

Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1L580P by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1L580P-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1L580P missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.

14.
Biochem Biophys Res Commun ; 434(4): 785-90, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23603360

RESUMO

Plexin-B1 regulates various cellular processes interacting directly with several Rho proteins. Molecular details of these interactions are, however, not well understood. In this study, we examined in vitro and in silico the interaction of the Rho binding domain (B1RBD) of human Plexin-B1 with 11 different Rho proteins. We show that B1RBD binds in a GTP-dependent manner to Rac1, Rac2, Rac3, Rnd1, Rnd2, Rnd3, and RhoD, but not to RhoA, Cdc42, RhoG, or Rif. Interestingly, Rnd1 competitively displaces the Rac1 from B1RBD but not vice versa. Structure-function analysis revealed a negatively charged loop region, called B1L(31), which may facilitate a selective B1RBD interaction with Rho proteins.


Assuntos
Proteínas do Tecido Nervoso/química , Receptores de Superfície Celular/química , Proteínas rho de Ligação ao GTP/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
15.
Biol Chem ; 394(1): 89-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23096567

RESUMO

Major advances have been made in understanding the structure, function and regulation of the small GTP-binding proteins of the Rho family and their involvement in multiple cellular process and disorders. However, intrinsic nucleotide exchange and hydrolysis reactions, which are known to be fundamental to Rho family proteins, have been partially investigated in the case of RhoA, Rac1 and Cdc42, but for others not at all. Here we present a comprehensive and quantitative analysis of the molecular switch functions of 15 members of the Rho family that enabled us to propose an active GTP-bound state for the rather uncharacterized isoforms RhoD and Rif under equilibrium and quiescent conditions.


Assuntos
Proteínas rho de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/classificação
16.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443814

RESUMO

Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Humanos , Células Endoteliais/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Fibrose
17.
J Biol Chem ; 286(20): 18202-12, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454492

RESUMO

The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Biológicos , Proteína rhoA de Ligação ao GTP/metabolismo , Catálise , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/genética
18.
Hum Mol Genet ; 19(5): 790-802, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19995790

RESUMO

Costello syndrome (CS) is a developmental disorder characterized by postnatal reduced growth, facial dysmorphism, cardiac defects, mental retardation and skin and musculo-skeletal defects. CS is caused by HRAS germline mutations. In the majority of cases, mutations affect Gly(12) and Gly(13) and are associated with a relatively homogeneous phenotype. The same amino acid substitutions are well known as somatic mutations in human tumors and promote constitutive HRAS activation by impairing its GTPase activity. In a small number of cases with mild phenotype, a second class of substitutions involving codons 117 and 146 and affecting GTP/GDP binding has been described. Here, we report on the identification and functional characterization of two different three-nucleotide duplications resulting in a duplication of glutamate 37 (p.E37dup) associated with a homogeneous phenotype reminiscent of CS. Ectopic expression of HRAS(E37dup) in COS-7 cells resulted in enhanced growth factor-dependent stimulation of the MEK-ERK and phosphoinositide 3-kinase (PI3K)-AKT signaling pathways. Recombinant HRAS(E37dup) was characterized by slightly increased GTP/GDP dissociation, lower intrinsic GTPase activity and complete resistance to neurofibromin 1 GTPase-activating protein (GAP) stimulation due to dramatically reduced binding. Co-precipitation of GTP-bound HRAS(E37dup) by various effector proteins, however, was inefficient because of drastically diminished binding affinities. Thus, although HRAS(E37dup) is predominantly present in the active, GTP-bound state, it promotes only a weak hyperactivation of downstream signaling pathways. These findings provide evidence that the mildly enhanced signal flux through the MAPK and PI3K-AKT cascades promoted by these disease-causing germline HRAS alleles results from a balancing effect between a profound GAP insensitivity and inefficient binding to effector proteins.


Assuntos
Síndrome de Costello/genética , Ácido Glutâmico/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Síndrome de Costello/metabolismo , Síndrome de Costello/patologia , Fácies , Genes ras , Humanos , Mutação , Neurofibromina 1/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 106(48): 20312-7, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19906996

RESUMO

Class I(B) phosphoinositide 3-kinase gamma (PI3Kgamma) elicits various immunologic and cardiovascular responses; however, the molecular basis for this signal heterogeneity is unclear. PI3Kgamma consists of a catalytic p110gamma and a regulatory p87(PIKAP) (p87, also p84) or p101 subunit. Hitherto p87 and p101 are generally assumed to exhibit redundant functions in receptor-induced and G protein betagamma (Gbetagamma)-mediated PI3Kgamma regulation. Here we investigated the molecular mechanism for receptor-dependent p87/p110gamma activation. By analyzing GFP-tagged proteins expressed in HEK293 cells, PI3Kgamma-complemented bone marrow-derived mast cells (BMMCs) from p110gamma(-/-) mice, and purified recombinant proteins reconstituted to lipid vesicles, we elucidated a novel pathway of p87-dependent, G protein-coupled receptor (GPCR)-induced PI3Kgamma activation. Although p101 strongly interacted with Gbetagamma, thereby mediating PI3Kgamma membrane recruitment and stimulation, p87 exhibited only a weak interaction, resulting in modest kinase activation and lack of membrane recruitment. Surprisingly, Ras-GTP substituted the missing Gbetagamma-dependent membrane recruitment of p87/p110gamma by direct interaction with p110gamma, suggesting the indispensability of Ras for activation of p87/p110gamma. Consequently, interference with Ras signaling indeed selectively blocked p87/p110gamma, but not p101/p110gamma, kinase activity in HEK293 and BMMC cells, revealing an important crosstalk between monomeric and trimeric G proteins for p87/p110gamma activation. Our data display distinct signaling requirements of p87 and p101, conferring signaling specificity to PI3Kgamma that could open up new possibilities for therapeutic intervention.


Assuntos
Ativação Enzimática/fisiologia , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Linhagem Celular , Imunofluorescência , Proteínas de Fluorescência Verde , Humanos , Mastócitos/metabolismo , Camundongos , Microscopia Confocal
20.
Cancer Gene Ther ; 29(5): 418-427, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34489556

RESUMO

KRAS is one of the most widely prevalent proto-oncogenes in human cancers. The constitutively active KRAS oncoprotein contributes to both tumor onset and cancer development by promoting cell proliferation and anchorage-independent growth in a MAPK pathway-dependent manner. The expression of microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, while long noncoding RNAs (lncRNAs) can act as regulators of the miRNAs targeting KRAS oncogene in different cancers and have gradually become a focus of research in recent years. In this review article, we summarize recent advances in the research on lncRNAs that have sponging effects on KRAS-targeting miRNAs as crucial mediators of KRAS expression in different cell types and organs. A deeper understanding of lncRNA function in KRAS-driven cancers is of major fundamental importance and will provide a valuable clinical tool for the diagnosis, prognosis, and eventual treatment of cancers.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA