Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681296

RESUMO

A sparkling-type draft cloudy sake (Japanese rice wine), AWANAMA, was recently developed using high hydrostatic pressure (HHP) treatment as a non-thermal pasteurization method. This prototype sake has a high potential market value, since it retains the fresh taste and flavor similar to draft sake while avoiding over-fermentation. From an economic point of view, a lower pressure level for HHP pasteurization is still required. In this study, we carried out a genome analysis of a pressure-sensitive (piezosensitive) mutant strain, a924E1, which was generated by UV mutagenesis from a laboratory haploid Saccharomyces cerevisiae strain, KA31a. This mutant strain had a deletion of the COX1 gene region in the mitochondrial DNA and had deficient aerobic respiration and mitochondrial functions. A metabolomic analysis revealed restricted flux in the TCA cycle of the strain. The results enabled us to use aerobic respiration deficiency as an indicator for screening a piezosensitive mutant. Thus, we generated piezosensitive mutants from a Niigata-sake yeast strain, S9arg, which produces high levels of ethyl caproate but does not produce urea and is consequently suitable for brewing a high-quality sake. The resultant piezosensitive mutants showed brewing characteristics similar to the S9arg strain. This study provides a screening method for generating a piezosensitive yeast mutant as well as insight on a new way of applying HHP pasteurization.

2.
DNA Res ; 23(3): 215-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27037832

RESUMO

Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.


Assuntos
Fagopyrum/genética , Genoma de Planta , Melhoramento Vegetal , Adaptação Fisiológica/genética , Mapeamento de Sequências Contíguas , DNA de Plantas/química , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Característica Quantitativa Herdável , Análise de Sequência de DNA
3.
PLoS One ; 7(2): e31264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312442

RESUMO

The different forms of flowers in a species have attracted the attention of many evolutionary biologists, including Charles Darwin. In Fagopyrum esculentum (common buckwheat), the occurrence of dimorphic flowers, namely short-styled and long-styled flowers, is associated with a type of self-incompatibility (SI) called heteromorphic SI. The floral morphology and intra-morph incompatibility are both determined by a single genetic locus named the S-locus. Plants with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s) at the S-locus. Despite recent progress in our understanding of the molecular basis of flower development and plant SI systems, the molecular mechanisms underlying heteromorphic SI remain unresolved. By examining differentially expressed genes from the styles of the two floral morphs, we identified a gene that is expressed only in short-styled plants. The novel gene identified was completely linked to the S-locus in a linkage analysis of 1,373 plants and had homology to EARLY FLOWERING 3. We named this gene S-LOCUS EARLY FLOWERING 3 (S-ELF3). In an ion-beam-induced mutant that harbored a deletion in the genomic region spanning S-ELF3, a phenotype shift from short-styled flowers to long-styled flowers was observed. Furthermore, S-ELF3 was present in the genome of short-styled plants and absent from that of long-styled plants both in world-wide landraces of buckwheat and in two distantly related Fagopyrum species that exhibit heteromorphic SI. Moreover, independent disruptions of S-ELF3 were detected in a recently emerged self-compatible Fagopyrum species and a self-compatible line of buckwheat. The nonessential role of S-ELF3 in the survival of individuals and the prolonged evolutionary presence only in the genomes of short-styled plants exhibiting heteromorphic SI suggests that S-ELF3 is a suitable candidate gene for the control of the short-styled phenotype of buckwheat plants.


Assuntos
Fagopyrum/genética , Fagopyrum/fisiologia , Flores/anatomia & histologia , Genoma de Planta/genética , Proteínas de Plantas/genética , Autoincompatibilidade em Angiospermas/genética , Sequência de Aminoácidos , Fagopyrum/anatomia & histologia , Fagopyrum/metabolismo , Flores/genética , Flores/metabolismo , Flores/fisiologia , Perfilação da Expressão Gênica , Mutagênese , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA