Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Antimicrob Agents Chemother ; 66(5): e0228521, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35435709

RESUMO

We had earlier reported the de novo emergence of genetic resisters of Mycobacterium tuberculosis and Mycobacterium smegmatis to rifampicin and moxifloxacin from the antibiotic-surviving population containing elevated levels of the non-DNA-specific mutagenic reactive oxygen species (ROS) hydroxyl radical. Since hydroxyl radical is generated by Fenton reaction between Fe(II) and H2O2, which is produced by superoxide dismutation, we here report significantly elevated levels of these three ROS and Fe(II) in the M. smegmatis rifampicin-surviving population. Elevated levels of superoxide and the consequential formation of high levels of H2O2 and Fe(II) led to the generation of hydroxyl radical, facilitating de novo high frequency emergence of antibiotic resisters. The M. smegmatis cultures, exposed to nontoxic concentrations of the ROS scavenger, thiourea (TU), and the NADH oxidase (one of the superoxide producers) inhibitor, diphenyleneiodonium chloride (DPI), showed a reduction in the levels of the three ROS, Fe(II), and antibiotic resister generation frequency. The non-antibiotic-exposed cultures grown in the absence/presence of TU/DPI did not show increased ROS, Fe(II) levels, or antibiotic resister generation frequency. The antibiotic-surviving population showed significantly increased expression and activity of superoxide-producing genes and decreased expression of antioxidant and DNA repair genes, revealing an environment conducive for the acquisition and retention of mutations. Since we recently reported significant comparability between the antibiotic-survival gene expression profiles of the saprophyte-cum-opportunistic pathogens M. smegmatis and the M. tuberculosis in tuberculosis patients undergoing treatment, we discuss the clinical relevance of the findings on the mechanism of emergence of antibiotic-resistant mycobacterial strains.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Compostos Ferrosos/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rifampina/metabolismo , Rifampina/farmacologia , Superóxidos/metabolismo
2.
Microbiology (Reading) ; 166(2): 180-198, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31746727

RESUMO

Bacterial antibiotic persister cells tolerate lethal concentrations of antibiotics but emerge as the antibiotic-sensitive population upon antibiotics withdrawal. However, the possibility of antibiotic-resistant genetic mutants emerging from the antibiotic persister population in the continued exposure to microbicidal concentrations of antibiotics needed investigation. We explored this possibility using the fast-growing Mycobacterium smegmatis as a model organism for Mycobacterium tuberculosis biology, as it is known to incur antibiotic-resistant mutations identical to and at identical target positions as found in the clinical isolates of M. tuberculosis. Here we report that the moxifloxacin (MXF) persister population generate significantly elevated levels of hydroxyl radical. Hydroxyl radical being a sequence-non-specific mutagen, resulted in the emergence of moxifloxacin-resistant genetic mutants at 8-log10 higher frequency from the persister population. Luria-Delbruck experiment (in modified format) confirmed that MXF-resistant mutants emerged de novo from the persister population and were not pre-existent. The nature of the mutations in the quinolone resistance determining region indicated that they were generated due to oxidative stress. These mutations were identical to and at identical positions as found in the clinical isolates of MXF-resistant M. tuberculosis. Interestingly, from the MXF persister population, resisters to microbicidal concentrations of ethambutol and isoniazid could also be selected. These observations implied that the significantly high levels of hydroxyl radical might have generated genome-wide mutations, creating a pool of mutants in the MXF persister population, facilitating selection of resisters to other antibiotics also. These findings may be of clinical relevance to the emergence of drug-resistant strains during prolonged tuberculosis treatment regimen with high doses of multiple antibiotics.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Tolerância a Medicamentos , Radical Hidroxila/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Etambutol/farmacologia , Genoma Bacteriano/genética , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução , Estresse Oxidativo
3.
Microbiology (Reading) ; 165(6): 668-682, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31091187

RESUMO

Phenotypically heterogeneous but genetically identical mycobacterial subpopulations exist in in vitro cultures, in vitro-infected macrophages, infected animal models and tuberculosis patients. In this regard, we recently reported the presence of two subpopulations of cells, which are phenotypically different in length and buoyant density, in mycobacterial cultures. These are the low-buoyant-density short-sized cells (SCs), which constitute ~10-20 % of the population, and the high-buoyant-density normal/long-sized cells (NCs), which form ~80-90 % of the population. The SCs were found to be significantly more susceptible to rifampicin (RIF), isoniazid (INH), H2O2 and acidified nitrite than the NCs. Here we report that the RIF-/INH-/H2O2-exposed SCs showed significantly higher levels of oxidative stress and therefore higher susceptibility than the equivalent number of exposed NCs. Significantly higher levels of hydroxyl radical and superoxide were found in the antibiotic-exposed SCs than in the equivalently exposed NCs. Different proportions of the subpopulation of SCs were found to have different levels of reactive oxygen species (ROS). The hydroxyl radical quencher, thiourea, and the superoxide dismutase mimic, TEMPOL, significantly reduced hydroxyl radical and superoxide levels, respectively, in the antibiotic-exposed SCs and NCs and thereby decreased their differential susceptibility to antibiotics. Thus, the present study shows that the heterogeneity of the reactive oxygen species (ROS) levels in these mycobacterial subpopulations confers differential susceptibility to antibiotics. We have discussed the possible mechanisms that can generate differential ROS levels in the antibiotic-exposed SCs and NCs. The present study advances our current understanding of the molecular mechanisms underlying antibiotic tolerance in mycobacteria.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxidos N-Cíclicos/farmacologia , Peróxido de Hidrogênio/farmacologia , Radical Hidroxila/metabolismo , Isoniazida/metabolismo , Isoniazida/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Mycobacterium smegmatis/genética , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Rifampina/metabolismo , Rifampina/farmacologia , Marcadores de Spin , Superóxidos/metabolismo , Tioureia/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-27895008

RESUMO

Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , DNA Girase/genética , RNA Polimerases Dirigidas por DNA/genética , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Genoma Bacteriano , Radical Hidroxila/metabolismo , Moxifloxacina , Mutação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Rifampina/administração & dosagem , Rifampina/farmacologia
6.
Arch Microbiol ; 196(3): 157-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24481536

RESUMO

Recently, several reports showed that about 80 % of mid-log phase Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG cells divide symmetrically with 5-10 % deviation in the septum position from the median. However, the mode of cell division of the pathogenic mycobacterial species, Mycobacterium tuberculosis, remained unclear. Therefore, in the present study, using electron microscopy, fluorescence microscopy of septum- and nucleoid-stained live and fixed cells, and live cell time-lapse imaging, we show the occurrence of asymmetric cell division with unusually deviated septum/constriction in 20 % of the 15 % septating M. tuberculosis cells in the mid-log phase population. The remaining 80 % of the 15 % septating cells divided symmetrically but with 2-5 % deviation in the septum/constriction position, as reported for M. smegmatis, M. marinum, and M. bovis BCG cells. Both the long and the short portions of the asymmetrically dividing M. tuberculosis cells with unusually deviated septum contained nucleoids, thereby generating viable short and long cells from each asymmetric division. M. tuberculosis short cells were acid fast positive and, like the long cells, further readily underwent growth and division to generate micro-colony, thereby showing that they were neither mini cells, spores nor dormant forms of mycobacteria. The freshly diagnosed pulmonary tuberculosis patients' sputum samples, which are known for the prevalence of oxidative stress conditions, also contained short cells at the same proportion as that in the mid-log phase population. The probable physiological significance of the generation of the short cells through unusually deviated asymmetric cell division is discussed.


Assuntos
Divisão Celular Assimétrica , Mycobacterium tuberculosis/citologia , Tuberculose/microbiologia , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mycobacterium/citologia , Mycobacterium tuberculosis/ultraestrutura , Escarro/microbiologia , Imagem com Lapso de Tempo
7.
J Antimicrob Chemother ; 68(1): 139-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23070736

RESUMO

OBJECTIVES: Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. METHOD: We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RT-PCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. RESULTS: Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. CONCLUSIONS: The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon γ (IFNγ), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumin's ability to hinder the bactericidal action of ciprofloxacin and IFNγ might significantly augment Salmonella pathogenesis.


Assuntos
Anti-Infecciosos/farmacologia , Ciprofloxacina/farmacologia , Curcumina/farmacologia , Salmonella typhi/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Animais , Anti-Infecciosos/antagonistas & inibidores , Anti-Infecciosos/uso terapêutico , Antioxidantes/farmacologia , Ciprofloxacina/antagonistas & inibidores , Ciprofloxacina/uso terapêutico , Interações Medicamentosas/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/mortalidade , Salmonella typhi/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Células U937
8.
MethodsX ; 11: 102344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37711139

RESUMO

Bacterial populations in the in vitro laboratory cultures, environment, and patients contain metabolically different subpopulations that respond differently to stress agents, including antibiotics, and emerge as stress tolerant or resistant strains. To contain the emergence of such strains, it is important to study the features of the metabolic status and response of the subpopulations to stress agents. For this purpose, an efficient method is required for the fractionation and isolation of the subpopulations from the cultures. Here we describe in detail the manual setting up of a simple, easy-to-do, reproducibly robust Percoll discontinuous density gradient centrifugation for the fractionation of subpopulations of short-sized cells (SCs) and normal/long-sized cells (NCs) from Mycobacterium smegmatis and Mycobacterium tuberculosis cultures, which we had reported earlier. About 90-98% enrichment was obtained respectively for SCs and NCs for M. smegmatis and 69-67% enrichment was obtained respectively for the SCs and NCs for M. tuberculosis.•The Percoll discontinuous density gradient centrifugation helps the fractionation and isolation of mycobacterial subpopulations that differ in density.•The method offers a consistently reproducible high enrichment of the subpopulations of SCs and NCs from the in vitro cultures of M. smegmatis and M. tuberculosis.•Our earlier reports on the consistency in the differential response of the subpopulations, enriched using the method, to oxidative, nitrite, and antibiotic stress proves its validity.

9.
J Bacteriol ; 194(3): 702-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22101845

RESUMO

The ultrastructural functions of the electron-dense glycopeptidolipid-containing outermost layer (OL), the arabinogalactan-mycolic acid-containing electron-transparent layer (ETL), and the electron-dense peptidoglycan layer (PGL) of the mycobacterial cell wall in septal growth and constriction are not clear. Therefore, using transmission electron microscopy, we studied the participation of the three layers in septal growth and constriction in the fast-growing saprophytic species Mycobacterium smegmatis and the slow-growing pathogenic species Mycobacterium xenopi and Mycobacterium tuberculosis in order to document the processes in a comprehensive and comparative manner and to find out whether the processes are conserved across different mycobacterial species. A complete septal partition is formed first by the fresh synthesis of the septal PGL (S-PGL) and septal ETL (S-ETL) from the envelope PGL (E-PGL) in M. smegmatis and M. xenopi. The S-ETL is not continuous with the envelope ETL (E-ETL) due to the presence of the E-PGL between them. The E-PGL disappears, and the S-ETL becomes continuous with the E-ETL, when the OL begins to grow and invaginate into the S-ETL for constriction. However, in M. tuberculosis, the S-PGL and S-ETL grow from the E-PGL and E-ETL, respectively, without a separation between the E-ETL and S-ETL by the E-PGL, in contrast to the process in M. smegmatis and M. xenopi. Subsequent growth and invagination of the OL into the S-ETL of the septal partition initiates and completes septal constriction in M. tuberculosis. A model for the conserved sequential process of mycobacterial septation, in which the formation of a complete septal partition is followed by constriction, is presented. The probable physiological significance of the process is discussed. The ultrastructural features of septation and constriction in mycobacteria are unusually different from those in the well-studied organisms Escherichia coli and Bacillus subtilis.


Assuntos
Membrana Celular/ultraestrutura , Parede Celular/ultraestrutura , Mycobacterium smegmatis/ultraestrutura , Mycobacterium tuberculosis/ultraestrutura , Membrana Celular/metabolismo , Parede Celular/metabolismo , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo , Mycobacterium/ultraestrutura , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo
10.
Protein Expr Purif ; 86(1): 58-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22982230

RESUMO

The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coli, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP, GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Genes Bacterianos , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Fases de Leitura Aberta , Desnaturação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solubilidade
11.
Int J Mycobacteriol ; 11(2): 150-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775547

RESUMO

Background: The antibiotic-exposed bacteria often contain the reactive oxygen species (ROS), hydroxyl radical, which inflicts genome-wide mutations, causing the de novo formation of antibiotic-resistant strains. Hydroxyl radical is generated by Fenton reaction of Fe (II) with the ROS, H2O2, which, in turn, is formed by the dismutation of the ROS, superoxide. Therefore, for the emergence of bacterial strains genetically resistant to antibiotics, increased levels of superoxide, H2O2, hydroxyl radical, and Fe (II) should be present in the antibiotic-exposed bacteria. Here, we verified this premise by finding out whether the in vitro cultures of M. smegmatis, exposed to MBC of moxifloxacin for a prolonged duration, contain significantly high levels of superoxide, H2O2, hydroxyl radical, and Fe (II). Methods: Biological triplicate cultures of M. smegmatis, were exposed to MBC of moxifloxacin for 84 h. The colony-forming units (CFUs) of the cultures were determined on moxifloxacin-free and moxifloxacin-containing plates for the entire 84 h at a regular interval of 6 h. The cultures were analyzed at specific time points of killing phase (KP), antibiotic-surviving phase (ASP), and regrowth phase (RGP) for the presence of superoxide, H2O2, hydroxyl radical, and Fe (II) using the ROS- and Fe (II)-detecting fluorescence probes. The experimental cultures were grown in the presence of ROS and Fe (II) quenchers also and determined the levels of fluorescence corresponding to the ROS- and Fe (II)-specific probes. This was performed to establish the specificity of detection of ROS and Fe (II). Biological triplicate cultures, unexposed to moxifloxacin but cultured for 84 h, were used as the control for the measurement of ROS and Fe (II) levels. The CFUs of the cultures were determined on moxifloxacin-free and moxifloxacin-containing plates for the entire 84 h at regular intervals of 6 h. Flow cytometry analyses were performed for the detection and quantitation of the levels of fluorescence of the ROS-and Fe (II)-specific probes. The experimental cultures were grown in the presence of thiourea and bipyridyl as the ROS and Fe (II) quenchers, respectively, for the determination of the levels of fluorescence corresponding to the ROS- and Fe (II)-specific probes. Paired t-test was used to calculate statistical significance (n = 3). Results: The moxifloxacin-exposed cultures, but not the cultures unexposed to moxifloxacin, showed a triphasic response with a KP, ASP, and RGP. The cells in the late KP and ASP contained significantly elevated levels of superoxide, H2O2, hydroxyl radical, and Fe (II). Thus, high levels of the ROS and Fe (II) were found in the small population (in the ASP) of M. smegmatis cells that survived the moxifloxacin-mediated killing. From this moxifloxacin-surviving population (in the ASP), moxifloxacin-resistant genetic resisters emerged de novo at high frequency, regrew, divided, and populated the cultures. The levels of these ROS, Fe (II), and the high moxifloxacin resister generation frequency were quenched in the cultures grown in the presence of the respective ROS and Fe (II) quenchers. The cultures unexposed to moxifloxacin did not show any of these responses, indicating that the whole response was specific to antibiotic exposure. Conclusions: Significantly high levels of superoxide, H2O2, hydroxyl radical, and Fe (II) were generated in the M. smegmatis cultures exposed to moxifloxacin for a prolonged duration. It promoted the de novo emergence of genetic resisters to moxifloxacin at high frequency.


Assuntos
Radical Hidroxila , Superóxidos , Antibacterianos/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Moxifloxacina/farmacologia , Mycobacterium smegmatis , Espécies Reativas de Oxigênio
12.
FEMS Microbiol Lett ; 368(21-24)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34902016

RESUMO

Antibiotic-exposed bacteria acquire genetic mutations and emerge as antibiotic-resistant clones that thwart treatment of bacterial diseases. Genome-wide mutations are inflicted by the reactive oxygen species (ROS), hydroxyl radical, formed in most of the antibiotic-exposed bacteria. Hydroxyl radical is generated through the Fenton reaction of Fe (II) with H2O2, which is formed by the dismutation of superoxide. This implied that antibiotic-exposed bacteria would contain these three ROS, promoting resister generation. In the present study, we examined Escherichia coli exposed independently to gentamicin and moxifloxacin for the presence of the three ROS and consequential emergence of genetic resisters to the antibiotics. Here we show that the three ROS are formed in E. coli exposed independently to bactericidal concentrations of gentamicin and moxifloxacin for a prolonged duration. Resisters to these antibiotics were found to emerge from the respective antibiotic-surviving population. The antibiotic-unexposed cultures did not show these responses. The Gram-positive ESKAPE pathogen, Staphylococcus aureus, also showed a response similar to that of E. coli upon prolonged exposure to bactericidal concentrations of rifampicin and moxifloxacin. The similar responses of E. coli and S. aureus to antibiotics indicated a common mechanism of ROS generation in the emergence of resisters against antibiotics.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Peróxido de Hidrogênio , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Staphylococcus aureus
13.
Curr Res Microb Sci ; 3: 100142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909599

RESUMO

The physiological role of mono-ADP-ribosyl transferase (Arr) of Mycobacterium smegmatis, which inactivates rifampicin, remains unclear. An earlier study reported increased expression of arr during oxidative stress and DNA damage. This suggested a role for Arr in the oxidative status of the cell and its associated effect on DNA damage. Since reactive oxygen species (ROS) influence oxidative status, we investigated whether Arr affected ROS levels in M. smegmatis. Significantly elevated levels of superoxide and hydroxyl radical were found in the mid-log phase (MLP) cultures of the arr knockout strain (arr-KO) as compared those in the wild-type strain (WT). Complementation of arr-KO with expression from genomically integrated arr under its native promoter restored the levels of ROS equivalent to that in WT. Due to the inherently high ROS levels in the actively growing arr-KO, rifampicin resisters with rpoB mutations could be selected at 0 hr of exposure itself against rifampicin, unlike in the WT where the resisters emerged at 12th hr of rifampicin exposure. Microarray analysis of the actively growing cultures of arr-KO revealed significantly high levels of expression of genes from succinate dehydrogenase I and NADH dehydrogenase I operons, which would have contributed to the increased superoxide levels. In parallel, expression of specific DNA repair genes was significantly decreased, favouring retention of the mutations inflicted by the ROS. Expression of several metabolic pathway genes also was significantly altered. These observations revealed that Arr was required for maintaining a gene expression profile that would provide optimum levels of ROS and DNA repair system in the actively growing M. smegmatis.

14.
Front Microbiol ; 13: 920117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338044

RESUMO

Bacteria regulate FtsZ protein levels through transcriptional and translational mechanisms for proper cell division. A cis-antisense RNA, StfZ, produced from the ftsA-ftsZ intergenic region, was proposed to regulate FtsZ level in Escherichia coli. However, its structural identity remained unknown. In this study, we determined the complete sequence of StfZ and identified the isoforms and its promoters. We find that under native physiological conditions, StfZ is expressed at a 1:6 ratio of StfZ:ftsZ mRNA at all growth phases from three promoters as three isoforms of 366, 474, and 552 nt RNAs. Overexpression of StfZ reduces FtsZ protein level, increases cell length, and blocks cell division without affecting the ftsZ mRNA stability. We did not find differential expression of StfZ under the stress conditions of heat shock, cold shock, or oxidative stress, or at any growth phase. These data indicated that the cis-encoded StfZ antisense RNA to ftsZ mRNA may be involved in the fine tuning of ftsZ mRNA levels available for translation as per the growth-phase-specific requirement at all phases of growth and cell division.

15.
Int J Mycobacteriol ; 11(3): 273-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260446

RESUMO

Background: We recently reported the de novo emergence of unusually high numbers of antibiotic resisters from the in vitro cultures of Mycobacterium tuberculosis and Mycobacterium smegmatis surviving in the presence of minimum bactericidal concentration (MBC) of antituberculosis antibiotics. The resisters emerged due to multiple asymmetric divisions of elongated mother cells containing multiple nucleoids and multiple septae. We had earlier found a minor subpopulation of short-sized cells (SCs) and a major subpopulation of normal-sized cells (NCs) (10% and 90%, respectively, of the whole population), with significant difference in antibiotic susceptibility and resister generation frequency, in the in vitro cultures of M. tuberculosis, M. smegmatis, and Mycobacterium xenopi, as well as in pulmonary tuberculosis patients' sputum. However, the mechanisms of growth and division promoting the emergence of antibiotic resisters from these subpopulations remained unknown. Therefore, here, we took up the first-time study to find out the mechanism of growth and division by which antibiotic resisters emerge from the antibiotic-surviving population of the two subpopulations of M. smegmatis. Methods: M. smegmatis SCs and NCs were fractionated from mid-log phase cultures using Percoll gradient centrifugation; their purity was checked and exposed to 10×, 2×, and 0.4× MBC of rifampicin for 120 h. The colony-forming units (CFUs) were determined on rifampicin-free plates for the total population and on rifampicin-containing plates for scoring rifampicin resisters. The phenotype and the morphology of the cells at various stages of the exposure were determined using transmission electron microscopy. The dynamic growth and division mechanisms of the cells to emerge as rifampicin resisters were monitored using live-cell time-lapse imaging. The rifampicin resisters were sequenced for mutations in the rifampicin resistance determining region of rpoB gene. Statistical significance was calculated using two-tailed paired t-test, with *P ≤ 0.05 and **P ≤ 0.01. Results: Multinucleated and multiseptated elongated cells emerged from their respective antibiotic-surviving populations. They produced a large number of sibling-daughter cells through multiple asymmetric divisions in short durations, showing abnormally high spurts in CFUs of antibiotic resisters. The CFUs were several-fold higher than that expected from the mass-doubling time of the subpopulations. Despite this commonality, the subpopulations showed specific differences in their response to different multiples of their respective MBC of rifampicin. Conclusions: Mycobacterial subpopulations come out of rifampicin stress by undergoing multiple nucleoid replications, multiple septation for nucleoid segregation, and acquisition of antibiotic target-specific mutations, followed by multiple asymmetric divisions to generate unusually a large number of rifampicin resisters. Because we had earlier shown that SCs and NCs are present in the pulmonary tuberculosis patients' sputum, the present findings have clinical relevance on the mechanism of emergence of antibiotic-resistant strains from mycobacterial subpopulations.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Humanos , Rifampina/farmacologia , Antibacterianos/farmacologia , Mycobacterium tuberculosis/genética , Mycobacterium smegmatis/genética
16.
Curr Res Microb Sci ; 3: 100148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909613

RESUMO

Exposure to antibiotics most often generates oxidative stress in bacteria. Oxidative stress survival mechanisms would facilitate the evolution of antibiotic resistance. As part of an effort to understand oxidative stress survival mechanisms in mycobacteria, here we show that the minor subpopulation (SCs; short-sized cells constituting 10% of the population) of Mycobacterium smegmatis significantly increased the survival of its major kin subpopulation (NCs; normal/long-sized cells constituting 90% of the population) in the mid-log-phase (MLP) cultures against the oxidative stress induced by rifampicin and exogenously added H2O2 (positive control). We had earlier shown that the SCs in the MLP cultures inherently and naturally release significantly high levels of H2O2 into the medium. Addition of the SCs' culture supernatant, unlike the supernatant of the dimethylthiourea (H2O2 scavenger) exposed SCs, enhanced the survival of NCs. It indicated that NCs' survival required the H2O2 present in the SCs' supernatant. This H2O2 transcriptionally induced high levels of catalase-peroxidase (KatG) in the NCs. The naturally high KatG levels in the NCs significantly neutralised the endogenous H2O2 formed upon exposure to rifampicin or H2O2, thereby enhancing the survival of NCs against oxidative stress. The absence of such enhanced survival in the furA-katG and katG knockout (KO) mutants of NCs in the presence of wild-type SCs, confirmed the requirement of the H2O2 present in the SCs' supernatant and NCs' KatG for enhanced oxidative stress survival. The presence of SCs:NCs at 1:9 in the pulmonary tuberculosis patients' sputum alludes to the clinical significance of the finding.

17.
J Biol Chem ; 285(40): 30389-403, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20558725

RESUMO

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H(2)O(2)-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/enzimologia , Estresse Oxidativo , Fosfoglicerato Mutase/metabolismo , Alvéolos Pulmonares/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Ciclo-Oxigenase 2/biossíntese , Células Epiteliais/microbiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Oxidantes/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Alvéolos Pulmonares/microbiologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/metabolismo , Tuberculose/enzimologia , Tuberculose/genética , Tuberculose/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Curr Microbiol ; 62(5): 1581-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21336990

RESUMO

Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX) is known to be transcribed from a promoter inside the upstream gene, ftsE, the transcriptional status of ftsE gene of M. tuberculosis (MtftsE) remains unknown. Therefore, the authors initiated transcriptional analyses of MtftsE, using total RNA from M. tuberculosis cells that were grown under stress conditions, which the pathogen is exposed to, in granuloma in tuberculosis patients. Primer extension experiments showed the presence of putative transcripts, T1, T2, T3, and T4. T1 originated from the intergenic region between the upstream gene, MRA_3135, and MtftsE. T2 and T3 were found initiated from within MRA_3135. T4 was transcribed from a region upstream of MRA_3135. RT-PCR confirmed co-transcription of MRA_3135 and MtftsE. The cloned putative promoter regions for T1, T2, and T3 elicited transcriptional activity in Mycobacterium smegmatis transformants. T1, T2, and T3, but no new transcript, were present in the M. tuberculosis cells that were grown under the stress conditions, which the pathogen is exposed to in granuloma in tuberculosis patients. It showed lack of modulation of MtftsE transcripts under the stress conditions tested, indicating that ftsE may not have a stress response-specific function in M. tuberculosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Transcrição Gênica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Intergênico , Humanos , Dados de Sequência Molecular , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Tuberculose/microbiologia
19.
FEMS Microbiol Lett ; 368(14)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240144

RESUMO

The bacterial populations surviving in the presence of antibiotics contain cells that have gained genetic resistance, phenotypic resistance and tolerance to antibiotics. Isolation of live bacterial population, surviving against antibiotics, from the milieu of high proportions of dead/damaged cells will facilitate the study of the cellular/molecular processes used by them for survival. Here we present a Percoll gradient centrifugation based method for the isolation of enriched population of Mycobacterium smegmatis surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin. From the time of harvest, throughout the enrichment and isolation processes, and up to the lysis of the cells for total RNA preparation, we maintained the cells in the presence of the antibiotic to avoid changes in their metabolic status. The total RNA extracted from the enriched population of live antibiotic-surviving population showed structural integrity and purity. We analysed the transcriptome profile of the antibiotic-surviving population and compared it with the orthologue genes of Mycobacterium tuberculosis that conferred antibiotic tolerance on tubercle bacilli isolated from the tuberculosis patients under treatment with four antitubercular antibiotics. Statistically significant comparability between the gene expression profiles of the antibiotic tolerance associated genes of M. smegmatis and M. tuberculosis validated the reliability/utility of the method.


Assuntos
Técnicas Bacteriológicas/métodos , Moxifloxacina/farmacologia , Mycobacterium smegmatis/isolamento & purificação , Mycobacterium smegmatis/fisiologia , Rifampina/farmacologia , Antituberculosos/farmacologia , Tolerância a Medicamentos/genética , Perfilação da Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Reprodutibilidade dos Testes
20.
Cells ; 10(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064643

RESUMO

Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister-daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.


Assuntos
Glicerol/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Antioxidantes/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Proliferação de Células , Meios de Cultura , DNA Complementar/metabolismo , Glicerol/química , Humanos , Mutação , Estresse Oxidativo , Pirofosfatases/metabolismo , RNA/metabolismo , Tuberculose , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Nudix Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA