Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Vet Sci ; 4: 207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255716

RESUMO

Bovine respiratory disease (BRD) is the most important illness of feedlot cattle. Disease management targets the associated bacterial pathogens, Mannheimia haemolytica, Mycoplasma bovis, Pasteurella multocida, Histophilus somni, and Trueperella pyogenes. We conducted a cross-sectional study to measure the frequencies of antimicrobial-resistant BRD pathogens using a collaborative network of veterinarians, industry, government, and a diagnostic laboratory. Seven private veterinary practices in southern Alberta collected samples from both living and dead BRD-affected animals at commercial feedlots. Susceptibility testing of 745 isolates showed that 100% of the M. haemolytica, M. bovis, P. multocida, and T. pyogenes isolates and 66.7% of the H. somni isolates were resistant to at least one antimicrobial class. Resistance to macrolide antimicrobials (90.2% of all isolates) was notable for their importance to beef production and human medicine. Multidrug resistance (MDR) was high in all target pathogens with 47.2% of the isolates resistant to four or five antimicrobial classes and 24.0% resistance to six to nine classes. We compared the MDR profiles of isolates from two feedlots serviced by different veterinary practices. Differences in the average number of resistant classes were found for M. haemolytica (p < 0.001) and P. multocida (p = 0.002). Compared to previous studies, this study suggests an increasing trend of resistance in BRD pathogens against the antimicrobials used to manage the disease in Alberta. For the veterinary clinician, the results emphasize the importance of ongoing susceptibility testing of BRD pathogens to inform treatment protocols. Surveillance studies that collect additional epidemiological information and manage sampling bias will be necessary to develop strategies to limit the spread of resistance.

2.
Diagn Microbiol Infect Dis ; 75(3): 227-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23273337

RESUMO

Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens isolated from bovine milk. In this study, we report a rapid assay for species identification of CNS using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time polymerase chain reaction amplification of 16S rRNA gene fragment, spanning the variable region V1 and V2, was performed with a resulting amplicon of 215 bp. A library of distinct melt curves of reference strains of 13 common CNS species was created using HRMA. Sequencing of 16S rRNA and rpoB genes, and, when needed, tuf gene, of 100 CNS isolates obtained from Canadian Bovine Mastitis Research Network was done to determine their species identity, allowing for subsequent evaluation of the performance of HRMA for field isolates of bovine CNS. A combination of HRMA and sequencing revealed that Staphylococcus chromogenes, S. xylosus, S. simulans, and S. sciuri had multiple genotypes, complicating their resolution by HRMA. As the 3 genotypes of S. chromogenes had distinct melt curves, the 3 distinct genotypes were employed as reference strains in a blinded trial of 156 CNS isolates to identify S. chromogenes. HRMA correctly identified all S. chromogenes isolates which were later confirmed by sequencing. Staphylococcus chromogenes (68%) was most frequently found among the CNS isolates, followed by S. haemolyticus (10%) and S. xylosus (6%). The present study revealed that HRMA of 16S rRNA gene (V1-V2) could be used as a rapid, efficient, low-cost, and minimally cumbersome technique for S. chromogenes identification, the most common CNS derived from bovine milk.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Coagulase/genética , Genes Bacterianos , Leite/microbiologia , Staphylococcus/isolamento & purificação , Animais , Bovinos , DNA Bacteriano/análise , DNA Bacteriano/genética , Microbiologia de Alimentos/métodos , Genes de RNAr , Genótipo , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Staphylococcus/classificação , Fatores de Tempo
3.
Vet Microbiol ; 155(2-4): 332-40, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21944716

RESUMO

Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with HRMA can be used as a powerful, fast and low-cost tool for the differentiation of clinically important bacterial mastitis pathogens.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/veterinária , Mastite Bovina/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Animais , Bactérias/classificação , Bactérias/genética , Infecções Bacterianas/microbiologia , Bovinos , DNA Ribossômico/química , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Leite/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA