Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 350: 141019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141679

RESUMO

This research investigated the ecological impact of exposing Eisenia fetida, an essential component of soil ecosystems, to the organophosphate pesticide ethoprophos, widely used in agriculture. With a focus on understanding the specific effects on earthworms, we employed three concentrations (7.5, 15, and 30 mg/kg) over 28 days, considering the pesticide's short half-life and existing data on environmental concentrations. We aimed to contribute to a broader understanding of how these pesticides affect soil health. Histological analysis, including staining with Hematoxylin-eosin, Mallory Trichrome, Periodic acid-Schiff, and Alcian blue methods, was conducted on control and treatment groups. The histological and histopathological results were evaluated using the light microscopy, revealing various degenerations in the epithelial and muscle layers. Scanning electron microscopy analysis detected concentration-related notable compaction of the body surface, asymmetry, and distortion in the body segments. In the exposed groups, especially those subjected to higher ethoprophos concentrations, the grid-like appearance of the clitellum was visibly disturbed. This disturbance in the grid-like pattern is indicative of structural changes and disruptions at the microscopic level. Furthermore, total protein, carbohydrate, lipid analyses, as well as acid phosphatase and alkaline phosphatase enzyme activities, were also evaluated for earthworms from each experimental group. The analyses showed a concentration-related decrease in all biochemical measurements, except acid phosphatase enzyme activity. In conclusion, our study reveals that the environmentally realistic concentrations of ethoprophos, an effective and widely used pesticide in pest control, have detrimental effects on the health and physiology of E. fetida. These effects are manifested through histological deformities, altered biochemical profiles, and observable physiological disturbances. These results shed light on the harmful effects of ethoprophos on earthworms, underlining the necessity to restrict its usage in agricultural practices and thereby support environmental sustainability.


Assuntos
Oligoquetos , Organotiofosfatos , Praguicidas , Poluentes do Solo , Animais , Microscopia Eletrônica de Varredura , Ecossistema , Praguicidas/análise , Solo/química , Fosfatase Ácida/metabolismo , Poluentes do Solo/análise
2.
Anat Rec (Hoboken) ; 307(5): 1930-1942, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37746926

RESUMO

The vertebral anatomy of snakes has attracted the attention of researchers for decades and numerous studies have been made for extinct and extant species. The present study investigated the morphological variations in vertebral structure among different vertebral regions in the dice snake Natrix tessellata, and provides a detailed anatomical and microstructural description of the vertebral column. Vertebrae were analyzed and compared using x-ray imaging, scanning electron microscopy, micro-computed tomography, and histological techniques. The vertebral column of N. tessellata is divided into three regions: precloacal, cloacal, and caudal. Unlike in many other tetrapods and snakes, the atlas of N. tessellata does not form a complete ring. It has a flat and roughly trilobate shape with a prominent middle lobe. The axis has two hypapophyses. The anterior precloacal region of the vertebral column has longer and more paddle-shaped hypapophyses, distinguishing it from the posterior and mid-trunk vertebrae. The anterior cloacal vertebrae have a short hypapophysis rather than a hemal keel, and the lymphapophysis extends outward, curving slightly. The cotyle and condyle of the caudal vertebrae exhibited a closer resemblance to a rounded shape, while the pleurapophysis extended ventrolaterally and curved ventrally near its distal end. Paired hemapophyses were present at the posterior-most point of the centrum instead of a hypapophysis. In light of previous fossil findings, our anatomical comparison of the vertebral and transverse processes indicates that the extant Natrix has a more flexible and less rigid spine than its ancestors. Overall, the vertebral differences among snake anatomical regions or taxa are a testament to the remarkable diversity and adaptability of these fascinating reptiles.


Assuntos
Colubridae , Animais , Turquia , Microtomografia por Raio-X , Coluna Vertebral/diagnóstico por imagem , Técnicas Histológicas
3.
J Dev Biol ; 11(1)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36810458

RESUMO

Amphibian skin is a particularly complex organ that is primarily responsible for respiration, osmoregulation, thermoregulation, defense, water absorption, and communication. The skin, as well as many other organs in the amphibian body, has undergone the most extensive rearrangement in the adaptation from water to land. Structural and physiological features of skin in amphibians are presented within this review. We aim to procure extensive and updated information on the evolutionary history of amphibians and their transition from water to land-that is, the changes seen in their skin from the larval stages to adulthood from the points of morphology, physiology, and immunology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA