Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Assay Drug Dev Technol ; 19(3): 191-203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471566

RESUMO

The challenges with scaffold profiling of cell-based assay includes accelerated cancer cell proliferation, induced scaffold toxicity, and identifying irrelevant cancer cell-based assays in batch assessments. This study investigates profiling carcinoma of breast cancer cells of MCF-7 model systems using silica nanoparticles scaffold sourced from synthetic materials and plant extracts. Herein, the engineered tissue scaffolds were used to create temporary structures for cancer cell attachments, differentiation, and subsequently to assess the metabolic activity of the cancer cell colonies. The cell viability of the cancer cells was assessed using the tetrazolium compound (MTS reagent), which was reduced to colored formazan, to indicate metabolically active cancer cells in a proliferating assay. We aimed to develop cancer cell-based scaffolds that not only mimic the neoplastic activity, but that also allowed synergistic interaction with cisplatin for in vitro assay screening.


Assuntos
Nanopartículas , Dióxido de Silício , Alicerces Teciduais , Microambiente Tumoral , Proliferação de Células , Sobrevivência Celular , Imunofluorescência , Humanos , Células MCF-7
2.
Assay Drug Dev Technol ; 19(1): 46-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443468

RESUMO

Drug attrition rate is the calculation or measure of the clinical efficacy of a candidate drug on a screen platform for a specific period. Determining the attrition rate of a prospective cancer drug is a reliable way of testing the clinical efficacy. A low attrition rate in the last phase of a preclinical trial increases the success of a drug discovery process. It has been reported that the attrition rates of antineoplastic drugs are much higher than for other therapeutic drugs. Among the factors identified for the high attrition rates in antineoplastic drugs are the nature of the screen-based platforms involving human-derived xenografts, extracellular matrix-derived scaffold systems, and the synthetic scaffolds, which all have propensity to proliferate tumor cells at faster rates than in vivo primary tumors. Other factors that affect the high attrition rates are induced scaffold toxicity and the use of assays that are irrelevant, yet affect data processing. These factors contribute to the wide variation in data and systematic errors. As a result, it becomes imperative to filter batch variations and to standardize the data. Importantly, understanding the interplay between the biological milieu and scaffold connections is also crucial. Here the cell viability of MCF-7 (breast cancer cell line) cells exposed to different scaffolds were screened before cisplatin dosing using the calculated p-values. The statistical significance (p-value) of data was calculated using the one-way analysis of variance, with the p-value set as: 0 < p < 0.06. In addition, the half-maximal inhibitory concentration (IC50) of the different scaffolds exposed to MCF-7 cells were calculated with the probit extension model and cumulative distribution (%) of the extension data. The chemotherapeutic dose (cisplatin, 56 mg/m2) reduced the cell viability of MCF-7 cells to 5% within 24 h on the scaffold developed from silica nanoparticles (SNPs) and polyethylene glycol (PEG) formulation (SNP:PEG) mixtures with a ratio of 1:10, respectively.


Assuntos
Algoritmos , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanocompostos/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
J R Soc Interface ; 17(167): 20200180, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574540

RESUMO

Nanozymes are nanomaterials with intrinsic magnetism and superparamagnetic properties. In the presence of an external magnet, nanozyme particles aggregate and redisperse without a foreign attraction. We evaluated the performances of nanozyme by changing the biosensing platforms and substituting other biological variants for a complete cancer assay detection. We investigated the expression of morphological variants in the transmission of signals using an electrochemical method. The signal responses, including signal enhancement with the nanozyme (Au-Fe2O3), showed a wide capturing range (greater than 80%, from 102 to 105 cells ml-1 in phosphate-buffered saline buffer, pH 7.4). The platform showed a fast response time within a dynamic range of 10-105 cells ml-1 for the investigated T47D cancer cell line. We also obtained higher responses for anti-HER2 (human epidermal receptor 2)/streptavidin interface as the biosensing electrode in the presence of T47D cancer cells. The positive assay produced a sixfold increase in current output compared to the negative target or negative biological variant. We calculated the limit of detection at 0.4 U ml-1, and of quantitation at 4 U ml-1 (units per millilitre). However, blood volume amounts in clinical settings may constrain diagnosis and increase detection limit value significantly.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Biomarcadores Tumorais , Técnicas Eletroquímicas , Compostos Férricos , Ouro , Humanos
4.
BMC Biotechnol ; 7: 88, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-18070345

RESUMO

BACKGROUND: Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. RESULTS: Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. CONCLUSION: Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.


Assuntos
Aminoácidos , Técnicas de Cultura de Células/instrumentação , Fluorenos , Hidrogel de Polietilenoglicol-Dimetacrilato , Alicerces Teciduais , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células COS , Adesão Celular , Sobrevivência Celular , Células Cultivadas , Chlorocebus aethiops , Dipeptídeos , Cães , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Teste de Materiais , Fenilalanina/análogos & derivados , Ratos , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA