Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 18(3): 241-259, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470681

RESUMO

The wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), is an important pest of wheat and other cereals, threatening the quality and quantity of grain production. WSS larvae feed and develop inside the stem where they are protected from the external environment; therefore, pest management strategies primarily rely on host plant resistance. A major locus on the long arm of wheat chromosome 3B underlies most of the variation in stem solidness; however, the impact of stem solidness on WSS feeding has not been completely characterized. Here, we used a multiomics approach to examine the response to WSS in both solid- and semi-solid-stemmed wheat varieties. The combined transcriptomic, proteomic, and metabolomic data revealed that two important molecular pathways, phenylpropanoid and phosphate pentose, are involved in plant defense against WSS. We also detected a general downregulation of several key defense transcripts, including those encoding secondary metabolites such as DIMBOA, tricetin, and lignin, which suggested that the WSS larva might interfere with plant defense. We comparatively analyzed the stem solidness genomic region known to be associated with WSS tolerance in wild emmer, durum, and bread wheats, and described syntenic regions in the close relatives barley, Brachypodium, and rice. Additionally, microRNAs identified from the same genomic region revealed potential regulatory pathways associated with the WSS response. We propose a model outlining the molecular responses of the WSS-wheat interactions. These findings provide insight into the link between stem solidness and WSS feeding at the molecular level.


Assuntos
Brachypodium/genética , Himenópteros/patogenicidade , Oryza/genética , Imunidade Vegetal/genética , Caules de Planta/genética , Sintenia , Triticum/genética , Animais , Brachypodium/parasitologia , Cromossomos de Plantas/genética , Metaboloma , Oryza/parasitologia , Caules de Planta/metabolismo , Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Triticum/parasitologia
2.
Funct Integr Genomics ; 15(5): 523-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113396

RESUMO

MicroRNAs, or miRNAs, are posttranscriptional regulators of gene expression. A wealth of observations and findings suggest highly complex, multicomponent, and intermingled pathways governing miRNA biogenesis and miRNA-mediated gene silencing. Plant miRNA genes are usually found as individual entities scattered around the intergenic and-to a much lesser extent-intragenic space, while miRNA gene clusters, formed by tandem or segmental duplications, also exist in plant genomes. Genome duplications are proposed to contribute to miRNA family expansions, as well. Evolutionarily young miRNAs retaining extensive homology to their loci of origin deliver important clues into miRNA origins and evolution. Additionally, imprecisely processed miRNAs evidence noncanonical routes of biogenesis, which may affect miRNA expression levels or targeting capabilities. Majority of the knowledge regarding miRNAs comes from model plant species. As ongoing research progressively expands into nonmodel systems, our understanding of miRNAs and miRNA-related pathways changes which opens up new perspectives and frontiers in miRNA research.


Assuntos
MicroRNAs/biossíntese , Plantas/genética , RNA de Plantas/biossíntese , Animais , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Humanos , MicroRNAs/genética , Plantas/metabolismo , RNA de Plantas/genética
3.
Plant Signal Behav ; 7(11): 1450-5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22990453

RESUMO

Stress signaling is central to plants which--as immobile organisms--have to endure environmental fluctuations that constantly interfere with vigorous growth. As a result, plant-specific, elaborate mechanisms have evolved to perceive and respond to stress conditions. Currently, these stress responses are plausibly being revealed to involve crosstalks with energy signaling pathways as any growth-limiting factor alters plant's energy status. Among these, autophagy, conventionally regarded as the mechanism whereby plants recycle and remobilize nutrients in bulk, has frequently been associated with stress responses. With the recent discoveries, however, autophagy has attained a novel role in stress signaling. In this review, major elements of abitoic stress signaling are summarized along with autophagy pathway, and in the light of recent discoveries, a putative, state-of-art role of autophagy is discussed.


Assuntos
Plantas/metabolismo , Autofagia/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA