Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 32(5): 501-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21305654

RESUMO

Genetic diseases are a pressing global health problem that requires comprehensive access to basic clinical and genetic data to counter. The creation of regional and international databases that can be easily accessed by clinicians and diagnostic labs will greatly improve our ability to accurately diagnose and treat patients with genetic disorders. The Human Variome Project is currently working in conjunction with human genetics societies to achieve this by establishing systems to collect every mutation reported by a diagnostic laboratory, clinic, or research laboratory in a country and store these within a national repository, or HVP Country Node. Nodes have already been initiated in Australia, Belgium, China, Egypt, Malaysia, and Kuwait. Each is examining how to systematically collect and share genetic, clinical, and biochemical information in a country-specific manner that is sensitive to local ethical and cultural issues. This article gathers cases of genetic data collection within countries and takes recommendations from the global community to develop a procedure for countries wishing to establish their own collection system as part of the Human Variome Project. We hope this may lead to standard practices to facilitate global collection of data and allow efficient use in clinical practice, research and therapy.


Assuntos
Coleta de Dados/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Humano/genética , Humanos , Internacionalidade , Mutação , Programas Nacionais de Saúde
2.
Saudi J Biol Sci ; 27(10): 2727-2732, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32994732

RESUMO

BACKGROUND: Bisoprolol is an effective ß1-adrenergic blocker, an inter-individual genetic variability was recorded in its response. This study aimed at investigating the association of CYP2D6*2A (rs1080985) and CYP2D6*10 (rs1065852) single-nucleotide polymorphism (SNP) with Bisoprolol response in cardiac patients attending King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia. PATIENTS AND METHODS: In the study, 107 patients were enrolled. Five mL of venous blood was collected from each patient and genotyping for CYP2D6*2A and CYP2D6*10 using Vivid® CYP2D6 Green Screening Kit (Life Technologies, USA). Response to Bisoprolol was evaluated through assessment of diastolic and systolic blood pressure and by measuring Bisoprolol plasma level using triple quad mass spectrometer (TQ-MS). RESULTS: All patients were found to carry homozygous wild type CYP2D6*10 (GG) and none were carrying heterozygous (GA) or mutant homozygous (AA) genotype. CYP2D6*2A allele was detected in the homozygous wild type (GG) in 70 out of 107 patients, the heterozygous (GC) in 19 patients, and the homozygous mutant (CC) in 18 patients with minor allele frequency (MAF) of 25.7%. The plasma concentrations of Bisoprolol in CC carriers were significantly lower than those in GG & CC carriers by 25%, and 51%; respectively. Higher systolic and diastolic blood pressures were also observed in CC carriers than GG and CC carriers. CONCLUSION: There is a possible association of CYP2D6*2A genotype with plasma concentration of bisoprolol. This could provide a helpful tool to choose the optimum dose for bisoprolol, depending on the patient's genotyping, in order to increase effectiveness and ameliorate its toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA