Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Res Methodol ; 24(1): 127, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834955

RESUMO

An electrocardiogram is a medical examination tool for measuring different patterns of heart blood flow circle either in the form of usual or non-invasive patterns. These patterns are useful for the identification of morbidity condition of the heart especially in certain conditions of heart abnormality and arrhythmia. Myocardial infarction (MI) is one of them that happened due to sudden blockage of blood by the cause of malfunction of heart. In electrocardiography (ECG) intensity of MI is highlighted on the basis of unusual patterns of T wave changes. Various studies have contributed for MI through T wave's classification, but more to the point of T wave has always attracted the ECG researchers. Methodology. This Study is primarily designed for proposing the combination of latest methods that are worked for the solutions of pre-defined research questions. Such solutions are designed in the form of the systematic review process (SLR) by following the Kitchen ham guidance. The literature survey is a two phase's process, at first phase collect the articles that were published in IEEE Xplore, Scopus, science direct and Springer from 2008 to 2023. It consist of steps; the first level is executed by filtrating the articles on the basis of keyword phase of title and abstract filter. Similarly, at two level the manuscripts are scanned through filter of eligibility criteria of articles selection. The last level belongs to the quality assessment of articles, in such level articles are rectified through evaluation of domain experts. Results. Finally, the selected articles are addressed with research questions and briefly discuss these selected state-of-the-art methods that are worked for the T wave classification. These address units behave as solutions to research problems that are highlighted in the form of research questions. Conclusion and future directions. During the survey process for these solutions, we got some critical observations in the form of gaps that reflected the other directions for researchers. In which feature engineering, different dependencies of ECG features and dimensional reduction of ECG for the better ECG analysis are reflection of future directions.


Assuntos
Eletrocardiografia , Infarto do Miocárdio , Humanos , Eletrocardiografia/métodos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia
2.
Sensors (Basel) ; 23(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836874

RESUMO

The Internet of Things (IoT) has significantly benefited several businesses, but because of the volume and complexity of IoT systems, there are also new security issues. Intrusion detection systems (IDSs) guarantee both the security posture and defense against intrusions of IoT devices. IoT systems have recently utilized machine learning (ML) techniques widely for IDSs. The primary deficiencies in existing IoT security frameworks are their inadequate intrusion detection capabilities, significant latency, and prolonged processing time, leading to undesirable delays. To address these issues, this work proposes a novel range-optimized attention convolutional scattered technique (ROAST-IoT) to protect IoT networks from modern threats and intrusions. This system uses the scattered range feature selection (SRFS) model to choose the most crucial and trustworthy properties from the supplied intrusion data. After that, the attention-based convolutional feed-forward network (ACFN) technique is used to recognize the intrusion class. In addition, the loss function is estimated using the modified dingo optimization (MDO) algorithm to ensure the maximum accuracy of classifier. To evaluate and compare the performance of the proposed ROAST-IoT system, we have utilized popular intrusion datasets such as ToN-IoT, IoT-23, UNSW-NB 15, and Edge-IIoT. The analysis of the results shows that the proposed ROAST technique did better than all existing cutting-edge intrusion detection systems, with an accuracy of 99.15% on the IoT-23 dataset, 99.78% on the ToN-IoT dataset, 99.88% on the UNSW-NB 15 dataset, and 99.45% on the Edge-IIoT dataset. On average, the ROAST-IoT system achieved a high AUC-ROC of 0.998, demonstrating its capacity to distinguish between legitimate data and attack traffic. These results indicate that the ROAST-IoT algorithm effectively and reliably detects intrusion attacks mechanism against cyberattacks on IoT systems.

3.
Diagnostics (Basel) ; 13(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37891986

RESUMO

It is difficult for clinicians or less-experienced ophthalmologists to detect early eye-related diseases. By hand, eye disease diagnosis is labor-intensive, prone to mistakes, and challenging because of the variety of ocular diseases such as glaucoma (GA), diabetic retinopathy (DR), cataract (CT), and normal eye-related diseases (NL). An automated ocular disease detection system with computer-aided diagnosis (CAD) tools is required to recognize eye-related diseases. Nowadays, deep learning (DL) algorithms enhance the classification results of retinograph images. To address these issues, we developed an intelligent detection system based on retinal fundus images. To create this system, we used ODIR and RFMiD datasets, which included various retinographics of distinct classes of the fundus, using cutting-edge image classification algorithms like ensemble-based transfer learning. In this paper, we suggest a three-step hybrid ensemble model that combines a classifier, a feature extractor, and a feature selector. The original image features are first extracted using a pre-trained AlexNet model with an enhanced structure. The improved AlexNet (iAlexNet) architecture with attention and dense layers offers enhanced feature extraction, task adaptability, interpretability, and potential accuracy benefits compared to other transfer learning architectures, making it particularly suited for tasks like retinograph classification. The extracted features are then selected using the ReliefF method, and then the most crucial elements are chosen to minimize the feature dimension. Finally, an XgBoost classifier offers classification outcomes based on the desired features. These classifications represent different ocular illnesses. We utilized data augmentation techniques to control class imbalance issues. The deep-ocular model, based mainly on the AlexNet-ReliefF-XgBoost model, achieves an accuracy of 95.13%. The results indicate the proposed ensemble model can assist dermatologists in making early decisions for the diagnosing and screening of eye-related diseases.

4.
Diagnostics (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37189488

RESUMO

The COVID-19 pandemic has presented a unique challenge for physicians worldwide, as they grapple with limited data and uncertainty in diagnosing and predicting disease outcomes. In such dire circumstances, the need for innovative methods that can aid in making informed decisions with limited data is more critical than ever before. To allow prediction with limited COVID-19 data as a case study, we present a complete framework for progression and prognosis prediction in chest X-rays (CXR) through reasoning in a COVID-specific deep feature space. The proposed approach relies on a pre-trained deep learning model that has been fine-tuned specifically for COVID-19 CXRs to identify infection-sensitive features from chest radiographs. Using a neuronal attention-based mechanism, the proposed method determines dominant neural activations that lead to a feature subspace where neurons are more sensitive to COVID-related abnormalities. This process allows the input CXRs to be projected into a high-dimensional feature space where age and clinical attributes like comorbidities are associated with each CXR. The proposed method can accurately retrieve relevant cases from electronic health records (EHRs) using visual similarity, age group, and comorbidity similarities. These cases are then analyzed to gather evidence for reasoning, including diagnosis and treatment. By using a two-stage reasoning process based on the Dempster-Shafer theory of evidence, the proposed method can accurately predict the severity, progression, and prognosis of a COVID-19 patient when sufficient evidence is available. Experimental results on two large datasets show that the proposed method achieves 88% precision, 79% recall, and 83.7% F-score on the test sets.

5.
Diagnostics (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36359579

RESUMO

The outbreak of the novel coronavirus disease COVID-19 (SARS-CoV-2) has developed into a global epidemic. Due to the pathogenic virus's high transmission rate, accurate identification and early prediction are required for subsequent therapy. Moreover, the virus's polymorphic nature allows it to evolve and adapt to various environments, making prediction difficult. However, other diseases, such as dengue, MERS-CoV, Ebola, SARS-CoV-1, and influenza, necessitate the employment of a predictor based on their genomic information. To alleviate the situation, we propose a deep learning-based mechanism for the classification of various SARS-CoV-2 virus variants, including the most recent, Omicron. Our model uses a neural network with a temporal convolution neural network to accurately identify different variants of COVID-19. The proposed model first encodes the sequences in the numerical descriptor, and then the convolution operation is applied for discriminative feature extraction from the encoded sequences. The sequential relations between the features are collected using a temporal convolution network to classify COVID-19 variants accurately. We collected recent data from the NCBI, on which the proposed method outperforms various baselines with a high margin.

6.
Comput Intell Neurosci ; 2022: 6354579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990145

RESUMO

Coronavirus (COVID-19) is a highly severe infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). The polymerase chain reaction (PCR) test is essential to confirm the COVID-19 infection, but it has certain limitations, including paucity of reagents, is computationally time-consuming, and requires expert clinicians. Clinicians suggest that the PCR test is not a reliable automated COVID-19 patient detection system. This study proposed a machine learning-based approach to evaluate the PCR role in COVID-19 detection. We collect real data containing 603 COVID-19 samples from the Pakistan Institute of Medical Sciences (PIMS) Hospital in Islamabad, Pakistan, during the third COVID-19 wave. The experiments are separated into two sets. The first set comprises 24 features, including PCR test results, whereas the second comprises 24 features without PCR test. The findings demonstrate that the decision tree achieves the best detection rate for positive and negative COVID-19 patients in both scenarios. The findings reveal that PCR does not contribute to detecting COVID-19 patients. The findings also aid in the early detection of COVID-19, mainly when PCR test results are insufficient for diagnosing COVID-19 and help developing countries with a paucity of PCR tests and specialist facilities.


Assuntos
COVID-19 , Benchmarking , COVID-19/diagnóstico , Humanos , Aprendizado de Máquina , Paquistão/epidemiologia , SARS-CoV-2
7.
Life (Basel) ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35629315

RESUMO

Currently, the spread of COVID-19 is running at a constant pace. The current situation is not so alarming, but every pandemic has a history of three waves. Two waves have been seen, and now expecting the third wave. Compartmental models are one of the methods that predict the severity of a pandemic. An enhanced SEIR model is expected to predict the new cases of COVID-19. The proposed model has an additional compartment of vaccination. This proposed model is the SEIRV model that predicts the severity of COVID-19 when the population is vaccinated. The proposed model is simulated with three conditions. The first condition is when social distancing is not incorporated, while the second condition is when social distancing is included. The third one condition is when social distancing is combined when the population is vaccinated. The result shows an epidemic growth rate of about 0.06 per day, and the number of infected people doubles every 10.7 days. Still, with imparting social distancing, the proposed model obtained the value of R0 is 1.3. Vaccination of infants and kids will be considered as future work.

8.
Front Med (Lausanne) ; 9: 1005920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405585

RESUMO

In the last 2 years, we have witnessed multiple waves of coronavirus that affected millions of people around the globe. The proper cure for COVID-19 has not been diagnosed as vaccinated people also got infected with this disease. Precise and timely detection of COVID-19 can save human lives and protect them from complicated treatment procedures. Researchers have employed several medical imaging modalities like CT-Scan and X-ray for COVID-19 detection, however, little concentration is invested in the ECG imaging analysis. ECGs are quickly available image modality in comparison to CT-Scan and X-ray, therefore, we use them for diagnosing COVID-19. Efficient and effective detection of COVID-19 from the ECG signal is a complex and time-taking task, as researchers usually convert them into numeric values before applying any method which ultimately increases the computational burden. In this work, we tried to overcome these challenges by directly employing the ECG images in a deep-learning (DL)-based approach. More specifically, we introduce an Efficient-ECGNet method that presents an improved version of the EfficientNetV2-B4 model with additional dense layers and is capable of accurately classifying the ECG images into healthy, COVID-19, myocardial infarction (MI), abnormal heartbeats (AHB), and patients with Previous History of Myocardial Infarction (PMI) classes. Moreover, we introduce a module to measure the similarity of COVID-19-affected ECG images with the rest of the diseases. To the best of our knowledge, this is the first effort to approximate the correlation of COVID-19 patients with those having any previous or current history of cardio or respiratory disease. Further, we generate the heatmaps to demonstrate the accurate key-points computation ability of our method. We have performed extensive experimentation on a publicly available dataset to show the robustness of the proposed approach and confirmed that the Efficient-ECGNet framework is reliable to classify the ECG-based COVID-19 samples.

9.
Microsc Res Tech ; 85(6): 2313-2330, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35194866

RESUMO

The COVID-19 pandemic is spreading at a fast pace around the world and has a high mortality rate. Since there is no proper treatment of COVID-19 and its multiple variants, for example, Alpha, Beta, Gamma, and Delta, being more infectious in nature are affecting millions of people, further complicates the detection process, so, victims are at the risk of death. However, timely and accurate diagnosis of this deadly virus can not only save the patients from life loss but can also prevent them from the complex treatment procedures. Accurate segmentation and classification of COVID-19 is a tedious job due to the extensive variations in its shape and similarity with other diseases like Pneumonia. Furthermore, the existing techniques have hardly focused on the infection growth estimation over time which can assist the doctors to better analyze the condition of COVID-19-affected patients. In this work, we tried to overcome the shortcomings of existing studies by proposing a model capable of segmenting, classifying the COVID-19 from computed tomography images, and predicting its behavior over a certain period. The framework comprises four main steps: (i) data preparation, (ii) segmentation, (iii) infection growth estimation, and (iv) classification. After performing the pre-processing step, we introduced the DenseNet-77 based UNET approach. Initially, the DenseNet-77 is used at the Encoder module of the UNET model to calculate the deep keypoints which are later segmented to show the coronavirus region. Then, the infection growth estimation of COVID-19 per patient is estimated using the blob analysis. Finally, we employed the DenseNet-77 framework as an end-to-end network to classify the input images into three classes namely healthy, COVID-19-affected, and pneumonia images. We evaluated the proposed model over the COVID-19-20 and COVIDx CT-2A datasets for segmentation and classification tasks, respectively. Furthermore, unlike existing techniques, we performed a cross-dataset evaluation to show the generalization ability of our method. The quantitative and qualitative evaluation confirms that our method is robust to both COVID-19 segmentation and classification and can accurately predict the infection growth in a certain time frame. RESEARCH HIGHLIGHTS: We present an improved UNET framework with a DenseNet-77-based encoder for deep keypoints extraction to enhance the identification and segmentation performance of the coronavirus while reducing the computational complexity as well. We propose a computationally robust approach for COVID-19 infection segmentation due to fewer model parameters. Robust segmentation of COVID-19 due to accurate feature computation power of DenseNet-77. A module is introduced to predict the infection growth of COVID-19 for a patient to analyze its severity over time. We present such a framework that can effectively classify the samples into several classes, that is, COVID-19, Pneumonia, and healthy samples. Rigorous experimentation was performed including the cross-dataset evaluation to prove the efficacy of the presented technique.


Assuntos
COVID-19 , Pneumonia , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pandemias , Tomografia Computadorizada por Raios X/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-35010740

RESUMO

The highly rapid spread of the current pandemic has quickly overwhelmed hospitals all over the world and motivated extensive research to address a wide range of emerging problems. The unforeseen influx of COVID-19 patients to hospitals has made it inevitable to deploy a rapid and accurate triage system, monitor progression, and predict patients at higher risk of deterioration in order to make informed decisions regarding hospital resource management. Disease detection in radiographic scans, severity estimation, and progression and prognosis prediction have been extensively studied with the help of end-to-end methods based on deep learning. The majority of recent works have utilized a single scan to determine severity or predict progression of the disease. In this paper, we present a method based on deep sequence learning to predict improvement or deterioration in successive chest X-ray scans and build a mathematical model to determine individual patient disease progression profile using successive scans. A deep convolutional neural network pretrained on a diverse lung disease dataset was used as a feature extractor to generate the sequences. We devised three strategies for sequence modeling in order to obtain both fine-grained and coarse-grained features and construct sequences of different lengths. We also devised a strategy to quantify positive or negative change in successive scans, which was then combined with age-related risk factors to construct disease progression profile for COVID-19 patients. The age-related risk factors allowed us to model rapid deterioration and slower recovery in older patients. Experiments conducted on two large datasets showed that the proposed method could accurately predict disease progression. With the best feature extractor, the proposed method was able to achieve AUC of 0.98 with the features obtained from radiographs. Furthermore, the proposed patient profiling method accurately estimated the health profile of patients.


Assuntos
COVID-19 , Aprendizado Profundo , Idoso , Progressão da Doença , Humanos , Redes Neurais de Computação , SARS-CoV-2
11.
Sci Rep ; 12(1): 8922, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618740

RESUMO

The outbreak of COVID-19, since its appearance, has affected about 200 countries and endangered millions of lives. COVID-19 is extremely contagious disease, and it can quickly incapacitate the healthcare systems if infected cases are not handled timely. Several Conventional Neural Networks (CNN) based techniques have been developed to diagnose the COVID-19. These techniques require a large, labelled dataset to train the algorithm fully, but there are not too many labelled datasets. To mitigate this problem and facilitate the diagnosis of COVID-19, we developed a self-attention transformer-based approach having self-attention mechanism using CT slices. The architecture of transformer can exploit the ample unlabelled datasets using pre-training. The paper aims to compare the performances of self-attention transformer-based approach with CNN and Ensemble classifiers for diagnosis of COVID-19 using binary Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and multi-class Hybrid-learning for UnbiaSed predicTion of COVID-19 (HUST-19) CT scan dataset. To perform this comparison, we have tested Deep learning-based classifiers and ensemble classifiers with proposed approach using CT scan images. Proposed approach is more effective in detection of COVID-19 with an accuracy of 99.7% on multi-class HUST-19, whereas 98% on binary class SARS-CoV-2 dataset. Cross corpus evaluation achieves accuracy of 93% by training the model with Hust19 dataset and testing using Brazilian COVID dataset.


Assuntos
COVID-19 , Algoritmos , COVID-19/diagnóstico , Humanos , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , SARS-CoV-2
12.
Healthcare (Basel) ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35627896

RESUMO

There have been considerable losses in terms of human and economic resources due to the current coronavirus pandemic. This work, which contributes to the prevention and control of COVID-19, proposes a novel modified epidemiological model that predicts the epidemic's evolution over time in India. A mathematical model was proposed to analyze the spread of COVID-19 in India during the lockdowns implemented by the government of India during the first and second waves. What makes this study unique, however, is that it develops a conceptual model with time-dependent characteristics, which is peculiar to India's diverse and homogeneous societies. The results demonstrate that governmental control policies and suitable public perception of risk in terms of social distancing and public health safety measures are required to control the spread of COVID-19 in India. The results also show that India's two strict consecutive lockdowns (21 days and 19 days, respectively) successfully helped delay the spread of the disease, buying time to pump up healthcare capacities and management skills during the first wave of COVID-19 in India. In addition, the second wave's severe lockdown put a lot of pressure on the sustainability of many Indian cities. Therefore, the data show that timely implementation of government control laws combined with a high risk perception among the Indian population will help to ensure sustainability. The proposed model is an effective strategy for constructing healthy cities and sustainable societies in India, which will help prevent such a crisis in the future.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34769600

RESUMO

In the recent pandemic, accurate and rapid testing of patients remained a critical task in the diagnosis and control of COVID-19 disease spread in the healthcare industry. Because of the sudden increase in cases, most countries have faced scarcity and a low rate of testing. Chest X-rays have been shown in the literature to be a potential source of testing for COVID-19 patients, but manually checking X-ray reports is time-consuming and error-prone. Considering these limitations and the advancements in data science, we proposed a Vision Transformer-based deep learning pipeline for COVID-19 detection from chest X-ray-based imaging. Due to the lack of large data sets, we collected data from three open-source data sets of chest X-ray images and aggregated them to form a 30 K image data set, which is the largest publicly available collection of chest X-ray images in this domain to our knowledge. Our proposed transformer model effectively differentiates COVID-19 from normal chest X-rays with an accuracy of 98% along with an AUC score of 99% in the binary classification task. It distinguishes COVID-19, normal, and pneumonia patient's X-rays with an accuracy of 92% and AUC score of 98% in the Multi-class classification task. For evaluation on our data set, we fine-tuned some of the widely used models in literature, namely, EfficientNetB0, InceptionV3, Resnet50, MobileNetV3, Xception, and DenseNet-121, as baselines. Our proposed transformer model outperformed them in terms of all metrics. In addition, a Grad-CAM based visualization is created which makes our approach interpretable by radiologists and can be used to monitor the progression of the disease in the affected lungs, assisting healthcare.


Assuntos
COVID-19 , Aprendizado Profundo , Teste para COVID-19 , Atenção à Saúde , Humanos , SARS-CoV-2
14.
Front Oncol ; 11: 811355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186717

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has caused a major outbreak around the world with severe impact on health, human lives, and economy globally. One of the crucial steps in fighting COVID-19 is the ability to detect infected patients at early stages and put them under special care. Detecting COVID-19 from radiography images using computational medical imaging method is one of the fastest ways to diagnose the patients. However, early detection with significant results is a major challenge, given the limited available medical imaging data and conflicting performance metrics. Therefore, this work aims to develop a novel deep learning-based computationally efficient medical imaging framework for effective modeling and early diagnosis of COVID-19 from chest x-ray and computed tomography images. The proposed work presents "WEENet" by exploiting efficient convolutional neural network to extract high-level features, followed by classification mechanisms for COVID-19 diagnosis in medical image data. The performance of our method is evaluated on three benchmark medical chest x-ray and computed tomography image datasets using eight evaluation metrics including a novel strategy of cross-corpse evaluation as well as robustness evaluation, and the results are surpassing state-of-the-art methods. The outcome of this work can assist the epidemiologists and healthcare authorities in analyzing the infected medical chest x-ray and computed tomography images, management of the COVID-19 pandemic, bridging the early diagnosis, and treatment gap for Internet of Medical Things environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA