Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
2.
Nature ; 572(7769): 323-328, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367044

RESUMO

Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Alelos , HDL-Colesterol/genética , Análise por Conglomerados , Determinação de Ponto Final , Finlândia , Mapeamento Geográfico , Humanos , Herança Multifatorial/genética , Reprodutibilidade dos Testes
3.
Int J Obes (Lond) ; 47(6): 453-462, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36823293

RESUMO

BACKGROUND/OBJECTIVE: This observational study dissects the complex temporal associations between body-mass index (BMI), waist-hip ratio (WHR) and circulating metabolomics using a combination of longitudinal and cross-sectional population-based datasets and new systems epidemiology tools. SUBJECTS/METHODS: Firstly, a data-driven subgrouping algorithm was employed to simplify high-dimensional metabolic profiling data into a single categorical variable: a self-organizing map (SOM) was created from 174 metabolic measures from cross-sectional surveys (FINRISK, n = 9708, ages 25-74) and a birth cohort (NFBC1966, n = 3117, age 31 at baseline, age 46 at follow-up) and an expert committee defined four subgroups of individuals based on visual inspection of the SOM. Secondly, the subgroups were compared regarding BMI and WHR trajectories in an independent longitudinal dataset: participants of the Young Finns Study (YFS, n = 1286, ages 24-39 at baseline, 10 years follow-up, three visits) were categorized into the four subgroups and subgroup-specific age-dependent trajectories of BMI, WHR and metabolic measures were modelled by linear regression. RESULTS: The four subgroups were characterised at age 39 by high BMI, WHR and dyslipidemia (designated TG-rich); low BMI, WHR and favourable lipids (TG-poor); low lipids in general (Low lipid) and high low-density-lipoprotein cholesterol (High LDL-C). Trajectory modelling of the YFS dataset revealed a dynamic BMI divergence pattern: despite overlapping starting points at age 24, the subgroups diverged in BMI, fasting insulin (three-fold difference at age 49 between TG-rich and TG-poor) and insulin-associated measures such as triglyceride-cholesterol ratio. Trajectories also revealed a WHR progression pattern: despite different starting points at the age of 24 in WHR, LDL-C and cholesterol-associated measures, all subgroups exhibited similar rates of change in these measures, i.e. WHR progression was uniform regardless of the cross-sectional metabolic profile. CONCLUSIONS: Age-associated weight variation in adults between 24 and 49 manifests as temporal divergence in BMI and uniform progression of WHR across metabolic health strata.


Assuntos
Obesidade , Pandemias , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Índice de Massa Corporal , Relação Cintura-Quadril , Estudos Transversais , LDL-Colesterol , Obesidade/epidemiologia , Colesterol , Insulina , Metabolômica , Fatores de Risco
5.
Nature ; 541(7635): 81-86, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002404

RESUMO

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Assuntos
Adiposidade/genética , Índice de Massa Corporal , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Obesidade/genética , Tecido Adiposo/metabolismo , Povo Asiático/genética , Sangue/metabolismo , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Europa (Continente)/etnologia , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Índia/etnologia , Masculino , Obesidade/sangue , Obesidade/complicações , Sobrepeso/sangue , Sobrepeso/complicações , Sobrepeso/genética , População Branca/genética
6.
Scand J Med Sci Sports ; 33(3): 307-318, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36331352

RESUMO

OBJECTIVE: Physical activity benefits cardiometabolic health, but little is known about its detailed links with serum lipoproteins, amino acids, and glucose metabolism at young age. We therefore studied the association of physical activity with a comprehensive metabolic profile measured repeatedly in adolescence. METHODS: The cohort is derived from the longitudinal Special Turku Coronary Risk Factor Intervention Project. At ages 13, 15, 17, and 19 years, data on physical activity were collected by a questionnaire, and circulating metabolic measures were quantified by nuclear magnetic resonance metabolomics from repeatedly assessed serum samples (age 13: n = 503, 15: n = 472, 17: n = 466, and 19: n = 361). RESULTS: Leisure-time physical activity (LTPA;MET h/wk) was directly associated with concentrations of polyunsaturated fatty acids, and inversely with the ratio of monounsaturated fatty acids to total fatty acids (-0.006SD; [-0.008, -0.003]; p < 0.0001). LTPA was inversely associated with very-low-density lipoprotein (VLDL) particle concentration (-0.003SD; [-0.005, -0.001]; p = 0.002) and VLDL particle size (-0.005SD; [-0.007, -0.003]; p < 0.0001). LTPA showed direct association with the particle concentration and size of high-density lipoprotein (HDL), and HDL cholesterol concentration (0.004SD; [0.002, 0.006]; p < 0.0001). Inverse associations of LTPA with triglyceride and total lipid concentrations in large to small sized VLDL subclasses were found. Weaker associations were seen for other metabolic measures including inverse associations with concentrations of lactate, isoleucine, glycoprotein acetylation, and a direct association with creatinine concentration. The results remained after adjusting for body mass index and proportions of energy intakes from macronutrients. CONCLUSIONS: Physical activity during adolescence is beneficially associated with the metabolic profile including novel markers. The results support recommendations on physical activity during adolescence to promote health and possibly reduce future disease risks.


Assuntos
Promoção da Saúde , Lipoproteínas , Humanos , Adolescente , Lipoproteínas HDL , Metaboloma , Exercício Físico
7.
J Hepatol ; 76(3): 526-535, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34710482

RESUMO

BACKGROUND & AIMS: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) ('MetComp') and part by common modifiers of genetic risk ('GenComp'). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. METHODS: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). RESULTS: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the 'MetComp'. In contrast, the 'GenComp' was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum ß-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum ß-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. CONCLUSIONS: These data show that the mechanisms underlying 'Metabolic' and 'Genetic' components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. LAY SUMMARY: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates.


Assuntos
Doenças Metabólicas/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Adulto , Biópsia/métodos , Biópsia/estatística & dados numéricos , Feminino , Finlândia/epidemiologia , Humanos , Fígado/patologia , Fígado/fisiopatologia , Masculino , Doenças Metabólicas/complicações , Doenças Metabólicas/epidemiologia , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Fatores de Risco
8.
J Intern Med ; 292(1): 146-153, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289444

RESUMO

BACKGROUND: Observational findings for high-density lipoprotein (HDL)-mediated cholesterol efflux capacity (HDL-CEC) and coronary heart disease (CHD) appear inconsistent, and knowledge of the genetic architecture of HDL-CEC is limited. OBJECTIVES: A large-scale observational study on the associations of HDL-CEC and other HDL-related measures with CHD and the largest genome-wide association study (GWAS) of HDL-CEC. PARTICIPANTS/METHODS: Six independent cohorts were included with follow-up data for 14,438 participants to investigate the associations of HDL-related measures with incident CHD (1,570 events). The GWAS of HDL-CEC was carried out in 20,372 participants. RESULTS: HDL-CEC did not associate with CHD when adjusted for traditional risk factors and HDL cholesterol (HDL-C). In contradiction, almost all HDL-related concentration measures associated consistently with CHD after corresponding adjustments. There were no genetic loci associated with HDL-CEC independent of HDL-C and triglycerides. CONCLUSION: HDL-CEC is not unequivocally associated with CHD in contrast to HDL-C, apolipoprotein A-I, and most of the HDL subclass particle concentrations.


Assuntos
Doença das Coronárias , Lipoproteínas HDL , HDL-Colesterol , Doença das Coronárias/genética , Estudo de Associação Genômica Ampla , Humanos , Lipoproteínas HDL/genética , Medição de Risco , Fatores de Risco
9.
PLoS Biol ; 17(12): e3000572, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860674

RESUMO

Cholesteryl ester transfer protein (CETP) inhibition reduces vascular event risk, but confusion surrounds its effects on low-density lipoprotein (LDL) cholesterol. Here, we clarify associations of genetic inhibition of CETP on detailed lipoprotein measures and compare those to genetic inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). We used an allele associated with lower CETP expression (rs247617) to mimic CETP inhibition and an allele associated with lower HMGCR expression (rs12916) to mimic the well-known effects of statins for comparison. The study consists of 65,427 participants of European ancestries with detailed lipoprotein subclass profiling from nuclear magnetic resonance spectroscopy. Genetic associations were scaled to 10% reduction in relative risk of coronary heart disease (CHD). We also examined observational associations of the lipoprotein subclass measures with risk of incident CHD in 3 population-based cohorts totalling 616 incident cases and 13,564 controls during 8-year follow-up. Genetic inhibition of CETP and HMGCR resulted in near-identical associations with LDL cholesterol concentration estimated by the Friedewald equation. Inhibition of HMGCR had relatively consistent associations on lower cholesterol concentrations across all apolipoprotein B-containing lipoproteins. In contrast, the associations of the inhibition of CETP were stronger on lower remnant and very-low-density lipoprotein (VLDL) cholesterol, but there were no associations on cholesterol concentrations in LDL defined by particle size (diameter 18-26 nm) (-0.02 SD LDL defined by particle size; 95% CI: -0.10 to 0.05 for CETP versus -0.24 SD, 95% CI -0.30 to -0.18 for HMGCR). Inhibition of CETP was strongly associated with lower proportion of triglycerides in all high-density lipoprotein (HDL) particles. In observational analyses, a higher triglyceride composition within HDL subclasses was associated with higher risk of CHD, independently of total cholesterol and triglycerides (strongest hazard ratio per 1 SD higher triglyceride composition in very large HDL 1.35; 95% CI: 1.18-1.54). In conclusion, CETP inhibition does not appear to affect size-specific LDL cholesterol but is likely to lower CHD risk by lowering concentrations of other atherogenic, apolipoprotein B-containing lipoproteins (such as remnant and VLDLs). Inhibition of CETP also lowers triglyceride composition in HDL particles, a phenomenon reflecting combined effects of circulating HDL, triglycerides, and apolipoprotein B-containing particles and is associated with a lower CHD risk in observational analyses. Our results reveal that conventional composite lipid assays may mask heterogeneous effects of emerging lipid-altering therapies.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Doença das Coronárias/sangue , Hidroximetilglutaril-CoA Redutases/sangue , Lipoproteínas/sangue , Adolescente , Adulto , Alelos , Apolipoproteínas B/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , LDL-Colesterol/sangue , Estudos de Coortes , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/etiologia , Doença das Coronárias/genética , Feminino , Seguimentos , Variação Genética , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipoproteínas/classificação , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue , Adulto Jovem
10.
Scand J Med Sci Sports ; 32(9): 1316-1323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35770444

RESUMO

Genetic and early environmental differences including early health habits associate with future health. To provide insight on the causal nature of these associations, monozygotic (MZ) twin pairs discordant for health habits provide an interesting natural experiment. Twin pairs discordant for leisure-time physical activity (LTPA) in early adult life is thus a powerful study design to investigate the associations between long-term LTPA and indicators of health and wellbeing. We have identified 17 LTPA discordant twin pairs from two Finnish twin cohorts and summarize key findings of these studies in this paper. The carefully characterized rare long-term LTPA discordant MZ twin pairs have participated in multi-dimensional clinical examinations. Key findings highlight that compared with less active twins in such MZ twin pairs, the twins with higher long-term LTPA have higher physical fitness, reduced body fat, reduced visceral fat, reduced liver fat, increased lumen diameters of conduit arteries to the lower limbs, increased bone mineral density in loaded bone areas, and an increased number of large high-density lipoprotein particles. The findings increase our understanding on the possible site-specific and system-level effects of long-term LTPA.


Assuntos
Exercício Físico , Gêmeos Monozigóticos , Adulto , Finlândia , Humanos , Atividade Motora , Aptidão Física
11.
Eur Heart J ; 42(12): 1160-1169, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33351885

RESUMO

AIMS: Angiopoietin-like protein 3 (ANGPTL3) and 4 (ANGPTL4) inhibit lipoprotein lipase (LPL) and represent emerging drug targets to lower circulating triglycerides and reduce cardiovascular risk. To investigate the molecular effects of genetic mimicry of ANGPTL3 and ANGPTL4 inhibition and compare them to the effects of genetic mimicry of LPL enhancement. METHODS AND RESULTS: Associations of genetic variants in ANGPTL3 (rs11207977-T), ANGPTL4 (rs116843064-A), and LPL (rs115849089-A) with an extensive serum lipid and metabolite profile (208 measures) were characterized in six cohorts of up to 61 240 participants. Genetic associations with anthropometric measures, glucose-insulin metabolism, blood pressure, markers of kidney function, and cardiometabolic endpoints via genome-wide summary data were also explored. ANGPTL4 rs116843064-A and LPL rs115849089-A displayed a strikingly similar pattern of associations across the lipoprotein and lipid measures. However, the corresponding associations with ANGPTL3 rs11207977-T differed, including those for low-density lipoprotein and high-density lipoprotein particle concentrations and compositions. All three genotypes associated with lower concentrations of an inflammatory biomarker glycoprotein acetyls and genetic mimicry of ANGPTL3 inhibition and LPL enhancement were also associated with lower C-reactive protein. Genetic mimicry of ANGPTL4 inhibition and LPL enhancement were associated with a lower waist-to-hip ratio, improved insulin-glucose metabolism, and lower risk of coronary heart disease and type 2 diabetes, whilst genetic mimicry of ANGPTL3 was associated with improved kidney function. CONCLUSIONS: Genetic mimicry of ANGPTL4 inhibition and LPL enhancement have very similar systemic metabolic effects, whereas genetic mimicry of ANGPTL3 inhibition showed differing metabolic effects, suggesting potential involvement of pathways independent of LPL. Genetic mimicry of ANGPTL4 inhibition and LPL enhancement were associated with a lower risk of coronary heart disease and type 2 diabetes. These findings reinforce evidence that enhancing LPL activity (either directly or via upstream effects) through pharmacological approaches is likely to yield benefits to human health.


Assuntos
Diabetes Mellitus Tipo 2 , Preparações Farmacêuticas , Proteína 3 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/genética , Angiopoietinas/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Análise da Randomização Mendeliana
12.
PLoS Med ; 17(3): e1003062, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203549

RESUMO

BACKGROUND: Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. METHODS AND FINDINGS: We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. CONCLUSIONS: These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.


Assuntos
Apolipoproteína B-100/genética , Doença das Coronárias/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Apolipoproteína B-100/sangue , Biomarcadores/sangue , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Doença das Coronárias/sangue , Doença das Coronárias/diagnóstico , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Análise Multivariada , Fenótipo , Medição de Risco , Fatores de Risco , Triglicerídeos/sangue
13.
Hum Mol Genet ; 27(12): 2214-2223, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648650

RESUMO

Fatty liver has been associated with unfavourable metabolic changes in circulation. To provide insights in fatty liver-related metabolic deviations, we compared metabolic association profile of fatty liver versus metabolic association profiles of genotypes increasing the risk of non-alcoholic fatty liver disease (NAFLD). The cross-sectional associations of ultrasound-ascertained fatty liver with 123 metabolic measures were determined in 1810 (Nfatty liver = 338) individuals aged 34-49 years from The Cardiovascular Risk in Young Finns Study. The association profiles of NAFLD-risk alleles in PNPLA3, TM6SF2, GCKR, and LYPLAL1 with the corresponding metabolic measures were obtained from a publicly available metabolomics GWAS including up to 24 925 Europeans. The risk alleles showed different metabolic effects: PNPLA3 rs738409-G, the strongest genetic NAFLD risk factor, did not associate with metabolic changes. Metabolic effects of GCKR rs1260326-T were comparable in many respects to the fatty liver associations. Metabolic effects of LYPLAL1 rs12137855-C were similar, but statistically less robust, to the effects of GCKR rs1260326-T. TM6SF2 rs58542926-T displayed opposite metabolic effects when compared with the fatty liver associations. The metabolic effects of the risk alleles highlight heterogeneity of the molecular pathways leading to fatty liver and suggest that the fatty liver-related changes in the circulating lipids and metabolites may vary depending on the underlying pathophysiological mechanism. Despite the robust cross-sectional associations on population level, the present results showing neutral or cardioprotective metabolic effects for some of the NAFLD risk alleles advocate that hepatic lipid accumulation by itself may not increase the level of circulating lipids or other metabolites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lipase/genética , Lisofosfolipase/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Alelos , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lipase/metabolismo , Fígado/metabolismo , Fígado/patologia , Lisofosfolipase/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
14.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481666

RESUMO

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.


Assuntos
Aminoácidos/metabolismo , Estudo de Associação Genômica Ampla/métodos , Finlândia , Frequência do Gene/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
15.
BMC Pulm Med ; 20(1): 193, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677943

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. METHODS: We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. RESULTS: There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10- 4 in the discovery and OR = 1.30, P = 1.8 × 10- 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52-2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94-1.20). CONCLUSIONS: Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.


Assuntos
Glicoproteínas/sangue , Metabolômica/métodos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Coortes , Feminino , Glicoproteínas/química , Humanos , Modelos Logísticos , Pulmão/metabolismo , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prognóstico , Doença Pulmonar Obstrutiva Crônica/mortalidade , Fatores de Risco , Taxa de Sobrevida
16.
PLoS Genet ; 13(10): e1007079, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084231

RESUMO

Lipid and lipoprotein subclasses are associated with metabolic and cardiovascular diseases, yet the genetic contributions to variability in subclass traits are not fully understood. We conducted single-variant and gene-based association tests between 15.1M variants from genome-wide and exome array and imputed genotypes and 72 lipid and lipoprotein traits in 8,372 Finns. After accounting for 885 variants at 157 previously identified lipid loci, we identified five novel signals near established loci at HIF3A, ADAMTS3, PLTP, LCAT, and LIPG. Four of the signals were identified with a low-frequency (0.005

Assuntos
Frequência do Gene/genética , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Lipoproteínas/genética , Polimorfismo de Nucleotídeo Único/genética , Triglicerídeos/genética , População Branca/genética , HDL-Colesterol/genética , Exoma/genética , Finlândia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal/métodos
17.
Diabetologia ; 62(12): 2298-2309, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31584131

RESUMO

AIMS/HYPOTHESIS: Metabolomics technologies have identified numerous blood biomarkers for type 2 diabetes risk in case-control studies of middle-aged and older individuals. We aimed to validate existing and identify novel metabolic biomarkers predictive of future diabetes in large cohorts of young adults. METHODS: NMR metabolomics was used to quantify 229 circulating metabolic measures in 11,896 individuals from four Finnish observational cohorts (baseline age 24-45 years). Associations between baseline metabolites and risk of developing diabetes during 8-15 years of follow-up (392 incident cases) were adjusted for sex, age, BMI and fasting glucose. Prospective metabolite associations were also tested with fasting glucose, 2 h glucose and HOMA-IR at follow-up. RESULTS: Out of 229 metabolic measures, 113 were associated with incident type 2 diabetes in meta-analysis of the four cohorts (ORs per 1 SD: 0.59-1.50; p< 0.0009). Among the strongest biomarkers of diabetes risk were branched-chain and aromatic amino acids (OR 1.31-1.33) and triacylglycerol within VLDL particles (OR 1.33-1.50), as well as linoleic n-6 fatty acid (OR 0.75) and non-esterified cholesterol in large HDL particles (OR 0.59). The metabolic biomarkers were more strongly associated with deterioration in post-load glucose and insulin resistance than with future fasting hyperglycaemia. A multi-metabolite score comprised of phenylalanine, non-esterified cholesterol in large HDL and the ratio of cholesteryl ester to total lipid in large VLDL was associated with future diabetes risk (OR 10.1 comparing individuals in upper vs lower fifth of the multi-metabolite score) in one of the cohorts (mean age 31 years). CONCLUSIONS/INTERPRETATION: Metabolic biomarkers across multiple molecular pathways are already predictive of the long-term risk of diabetes in young adults. Comprehensive metabolic profiling may help to target preventive interventions for young asymptomatic individuals at increased risk.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Resistência à Insulina/fisiologia , Insulina/sangue , Adulto , Biomarcadores/sangue , Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos/sangue , Feminino , Finlândia/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fenilalanina/sangue , Risco , Adulto Jovem
18.
Circulation ; 138(22): 2499-2512, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30524137

RESUMO

Background: Both statins and PCSK9 inhibitors lower blood low-density lipoprotein cholesterol (LDL-C) levels to reduce risk of cardiovascular events. To assess potential differences between metabolic effects of these two lipid-lowering therapies, we performed detailed lipid and metabolite profiling of a large randomized statin trial and compared the results with the effects of genetic inhibition of PCSK9, acting as a naturally occurring trial. Methods: 228 circulating metabolic measures were quantified by nuclear magnetic resonance spectroscopy, including lipoprotein subclass concentrations and their lipid composition, fatty acids, and amino acids, for 5,359 individuals (2,659 on treatment) in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) trial at 6-months post-randomization. The corresponding metabolic measures were analyzed in eight population cohorts (N=72,185) using PCSK9 rs11591147 as an unconfounded proxy to mimic the therapeutic effects of PCSK9 inhibitors. Results: Scaled to an equivalent lowering of LDL-C, the effects of genetic inhibition of PCSK9 on 228 metabolic markers were generally consistent with those of statin therapy (R2=0.88). Alterations in lipoprotein lipid composition and fatty acid distribution were similar. However, discrepancies were observed for very-low-density lipoprotein (VLDL) lipid measures. For instance, genetic inhibition of PCSK9 had weaker effects on lowering of VLDL-cholesterol compared with statin therapy (54% vs. 77% reduction, relative to the lowering effect on LDL-C; P=2x10-7 for heterogeneity). Genetic inhibition of PCSK9 showed no significant effects on amino acids, ketones, or a marker of inflammation (GlycA) whereas statin treatment weakly lowered GlycA levels. Conclusions: Genetic inhibition of PCSK9 had similar metabolic effects to statin therapy on detailed lipid and metabolite profiles. However, PCSK9 inhibitors are predicted to have weaker effects on VLDL lipids compared with statins for an equivalent lowering of LDL-C, which potentially translate into smaller reductions in cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Metabolômica/métodos , Pró-Proteína Convertase 9/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/análise , Aminoácidos/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Método Duplo-Cego , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana , Inibidores de PCSK9 , Efeito Placebo , Pravastatina/uso terapêutico , Pró-Proteína Convertase 9/genética
19.
Int J Cancer ; 144(8): 1918-1928, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325021

RESUMO

Lycopene and green tea consumption have been observationally associated with reduced prostate cancer risk, but the underlying mechanisms have not been fully elucidated. We investigated the effect of factorial randomisation to a 6-month lycopene and green tea dietary advice or supplementation intervention on 159 serum metabolite measures in 128 men with raised PSA levels (but prostate cancer-free), analysed by intention-to-treat. The causal effects of metabolites modified by the intervention on prostate cancer risk were then assessed by Mendelian randomisation, using summary statistics from 44,825 prostate cancer cases and 27,904 controls. The systemic effects of lycopene and green tea supplementation on serum metabolic profile were comparable to the effects of the respective dietary advice interventions (R2 = 0.65 and 0.76 for lycopene and green tea respectively). Metabolites which were altered in response to lycopene supplementation were acetate [ß (standard deviation difference vs. placebo): 0.69; 95% CI = 0.24, 1.15; p = 0.003], valine (ß: -0.62; -1.03, -0.02; p = 0.004), pyruvate (ß: -0.56; -0.95, -0.16; p = 0.006) and docosahexaenoic acid (ß: -0.50; -085, -0.14; p = 0.006). Valine and diacylglycerol were lower in the lycopene dietary advice group (ß: -0.65; -1.04, -0.26; p = 0.001 and ß: -0.59; -1.01, -0.18; p = 0.006). A genetically instrumented SD increase in pyruvate increased the odds of prostate cancer by 1.29 (1.03, 1.62; p = 0.027). An intervention to increase lycopene intake altered the serum metabolome of men at risk of prostate cancer. Lycopene lowered levels of pyruvate, which our Mendelian randomisation analysis suggests may be causally related to reduced prostate cancer risk.


Assuntos
Comportamento Alimentar/fisiologia , Licopeno , Metaboloma/fisiologia , Neoplasias da Próstata/metabolismo , Chá , Idoso , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/dietoterapia , Ácido Pirúvico/sangue
20.
BMC Med ; 17(1): 217, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31779625

RESUMO

BACKGROUND: Insulin resistance (IR) is predictive for type 2 diabetes and associated with various metabolic abnormalities in fasting conditions. However, limited data are available on how IR affects metabolic responses in a non-fasting setting, yet this is the state people are mostly exposed to during waking hours in the modern society. Here, we aim to comprehensively characterise the metabolic changes in response to an oral glucose test (OGTT) and assess the associations of these changes with IR. METHODS: Blood samples were obtained at 0 (fasting baseline, right before glucose ingestion), 30, 60, and 120 min during the OGTT. Seventy-eight metabolic measures were analysed at each time point for a discovery cohort of 4745 middle-aged Finnish individuals and a replication cohort of 595 senior Finnish participants. We assessed the metabolic changes in response to glucose ingestion (percentage change in relative to fasting baseline) across the four time points and further compared the response profile between five groups with different levels of IR and glucose intolerance. Further, the differences were tested for covariate adjustment, including gender, body mass index, systolic blood pressure, fasting, and 2-h glucose levels. The groups were defined as insulin sensitive with normal glucose (IS-NGT), insulin resistant with normal glucose (IR-NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and new diabetes (NDM). IS-NGT and IR-NGT were defined as the first and fourth quartile of fasting insulin in NGT individuals. RESULTS: Glucose ingestion induced multiple metabolic responses, including increased glycolysis intermediates and decreased branched-chain amino acids, ketone bodies, glycerol, and triglycerides. The IR-NGT subgroup showed smaller responses for these measures (mean + 23%, interquartile 9-34% at 120 min) compared to IS-NGT (34%, 23-44%, P < 0.0006 for difference, corrected for multiple testing). Notably, the three groups with glucose abnormality (IFG, IGT, and NDM) showed similar metabolic dysregulations as those of IR-NGT. The difference between the IS-NGT and the other subgroups was largely explained by fasting insulin, but not fasting or 2 h glucose. The findings were consistent after covariate adjustment and between the discovery and replication cohort. CONCLUSIONS: Insulin-resistant non-diabetic individuals are exposed to a similar adverse postprandial metabolic milieu, and analogous cardiometabolic risk, as those with type 2 diabetes. The wide range of metabolic abnormalities associated with IR highlights the necessity of diabetes diagnostics and clinical care beyond glucose management.


Assuntos
Teste de Tolerância a Glucose , Glucose/administração & dosagem , Resistência à Insulina , Administração Oral , Adolescente , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Jejum , Feminino , Seguimentos , Glucose/farmacologia , Humanos , Lactente , Recém-Nascido , Insulina/metabolismo , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA