Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838787

RESUMO

New fluorinated polyhydroxyurethanes (FPHUs) with various molar weights were synthesized via the polyaddition reaction of a fluorinated telechelic bis(cyclocarbonate) (bis-CC) with a diamine. The fluorinated bis-CC was initially synthesized by carbonylation of a fluorinated diepoxide, 1,4-bis(2',3'-epoxypropyl)perfluorobutane, in the presence of LiBr catalyst, in high yield. Then, several reaction conditions were optimized through the model reactions of the fluorinated bis-CC with hexylamine. Subsequently, fluorinated polymers bearing hydroxyurethane moieties (FPHUs) were prepared by reacting the bis-CC with different hexamethylenediamine amounts in bulk at 80 °C and the presence of a catalyst. The chemoselective polymerization reaction yielded three isomers bearing primary and secondary hydroxyl groups in 61-82% yield. The synthesized fluorinated CCs and the corresponding FPHUs were characterized by 1H, 19F, and 13C NMR spectroscopy. They were compared to their hydrogenated homologues synthesized in similar conditions. The gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) data of the FPHUs revealed a higher molar mass and a slight increase in glass transition and decomposition temperatures compared to those of the PHUs.


Assuntos
Polímeros de Fluorcarboneto , Polímeros , Polímeros/química , Temperatura , Polimerização , Isomerismo
2.
Org Biomol Chem ; 16(35): 6600-6605, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30175348

RESUMO

Herein we report the reduction of aromatic nitriles into aldehydes with calcium hypophosphite in the presence of base and nickel(ii) complex in a water/ethanol mixture. This catalytic system reduced efficiently a series of aromatic nitriles bearing different functional groups such as -Cl, -CF3, -Br, -CH3, -OCH3, -COOCH2CH3, -OH and -CHO. The corresponding aldehydes were isolated in moderate to excellent yields (30-94%).

3.
Polymers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872346

RESUMO

Novel triethoxysilane and dimethyl phosphonate functional vinylidene fluoride (VDF)-containing terpolymers, for potential applications in Eu ion extraction from water, were produced by conventional radical terpolymerization of VDF with vinyltriethoxylsilane (VTEOS) and vinyldimethylphosphonate (VDMP). Although initial attempts for the copolymerization of VTEOS and VDMP failed, the successful terpolymerization was initiated by peroxide to lead to multiple poly(VDF-ter-VDMP-ter-VTEOS) terpolymers, that had different molar percentages of VDF (70-90 mol.%), VTEOS (5-20 mol.%) and VDMP (10 mol.%) in 50-80% yields. The obtained terpolymers were characterized by 1H, 19F, 29Si and 31P NMR spectroscopies. The crosslinking of such resulting poly(VDF-ter-VDMP-ter-VTEOS) terpolymers was achieved by hydrolysis and condensation (sol-gel process) of the triethoxysilane groups in acidic media, to obtain a 3D network, which was analyzed by solid state 29Si and 31P NMR spectroscopies, TGA and DSC. The thermal stability of the terpolymers was moderately high (up to 300 °C under air), whereas they display a slight increase in their crystallinity-rate from 9.7% to 12.1% after crosslinking. Finally, the dimethyl phosphonate functions were hydrolyzed into phosphonic acid successfully, and the europium ion extraction capacity of terpolymer was studied. The results demonstrated a very high removal capacity of Eu(III) ions from water, up to a total removal at low concentrations.

4.
ACS Appl Mater Interfaces ; 12(1): 38-59, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31801016

RESUMO

Several strategies to synthesize fluorinated (co)polymers containing phosphorus groups and their applications are reviewed. First, original fluoromonomers bearing phosphorus atoms are supplied from relevant routes. They may possess fluorinated atoms linked to the ethylenic carbon atoms with different structures, such as F2C═CF- or H2C═C(CF3)- and a phosphonated ω-function adjacent to an aliphatic or aromatic linker, while other monomers display a difluoromethylene dialkylphosphonate end group such as -CF2-P(O)(OR)2. Then, fluorinated copolymers were obtained according to various pathways: (i) by radical homopolymerization of monomers containing both fluorine and phosphorus atoms, (ii) by direct radical copolymerization of fluoromonomers and phosphorus-based monomers, or (iii) by chemical modification of fluorinated copolymers with phosphorus-based reactants. Conventional radical and controlled (or reversible deactivation radical polymerization, RDRP) copolymerization have also been explored. As for the chemical change of halogenated polymers, either conventional organic reactions (e.g., Arbuzov reaction from a chlorine, iodine, or bromine atom) or radiation grafting with specific monomers led to graft copolymers composed of a fluorinated backbone and phosphonated grafts. This second part also details aliphatic and aromatic fluorophosphorous copolymers in which dialkylphosphonates or phosphonic acids are reported. Finally, since fluorine and phosphorus atoms bring complementary relevant properties (low refractive index and dielectric constants, chemical inertness, high electrochemical, soils, and heat resistances, electroattractivity from fluorine atoms and high acidity, complexation, anticorrosion, flame retardant, and biomedical properties from phosphorus ones), synergetic characteristics have been targeted. These properties allow such fluoro-phosphorus (co)polymers to be used as novel materials involved in various applications such as polymer exchange membranes for fuel cells, self-etching adhesives for dental materials, adhesion promoters, flame retardants, polymer blends, and anticorrosive coatings.

5.
ACS Appl Mater Interfaces ; 9(7): 6433-6443, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28121419

RESUMO

Vinylidene fluoride (VDF)-based copolymers bearing pendant phosphonic acid function for potential application as anticorrosion coatings were synthesized via free radical copolymerization of VDF with a new phosphorus containing 2-trifluoromethacrylate monomer, (dimethoxyphosphoryl)methyl 2-(trifluoromethyl)acrylate (MAF-DMP). MAF-DMP was prepared from 2-trifluoromethacrylic acid in 60% overall yield. Radical copolymerizations of VDF with MAF-DMP initiated by tert-amyl peroxy-2-ethylhexanoate at varying ([VDF]0/[MAF-DMP]0) feed ratios led to several poly(VDF-co-MAF-DMP) copolymers having different molar percentages of VDF (79-96%) and number-average molecular weights (Mn's) up to ca. 10 000 g mol-1 in fair yields (47-53%). Determination of the composition and microstructure of all the synthesized copolymers was done by 1H and 19F NMR spectroscopies. The monomer reactivity ratios of this new VDF/MAF-DMP pair were also determined (rVDF = 0.76 ± 0.34 and rMAF-DMP = 0 at 74 °C). The resulting poly(VDF-co-MAF-DMP) copolymers exhibited high melting temperature (162-171 °C, with respect to the VDF content), and the degree of crystallinity reached up to 51%. Finally, the pendant dimethyl phosphonate ester groups of the synthesized poly(VDF-co-MAF-DMP) copolymer were quantitatively hydrolyzed, giving rise to novel phosphonic acid-functionalized PVDF (PVDF-PA). In comparison to hydrophobic poly(VDF-co-MAF-DMP) copolymers (the water contact angle, WCA, was 98°), the hydrophilic character of the PVDF-PA was found to be surprisingly rather pronounced, exhibiting low WCA (15°). Finally, steel plates coated with PVDF-PA displayed satisfactory anticorrosion properties under simulated seawater environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA