Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 627(8005): 830-838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448588

RESUMO

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Assuntos
Pulmão , Reflexo , Respiração , Mecânica Respiratória , Nervo Vago , Animais , Feminino , Masculino , Camundongos , Células Epiteliais/metabolismo , Pulmão/citologia , Pulmão/inervação , Pulmão/fisiologia , Mecanorreceptores/metabolismo , Parvalbuminas/metabolismo , Reflexo/fisiologia , Células Receptoras Sensoriais/metabolismo , Nervo Vago/fisiologia , Complacência Pulmonar/fisiologia , Mecânica Respiratória/fisiologia
2.
Annu Rev Physiol ; 75: 393-422, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23245563

RESUMO

Regulated exocytosis and endocytosis are critical to the function of many intercellular networks, particularly the complex neural circuits underlying mammalian behavior. Kiss-and-run (KR) is an unconventional fusion between secretory vesicles and a target membrane that releases intravesicular content through a transient, nanometer-sized fusion pore. The fusing vesicle retains its gross shape, precluding full integration into the planar membrane, and enough molecular components for rapid retrieval, reacidification, and reuse. KR makes judicious use of finite presynaptic resources, and mounting evidence suggests that it influences synaptic information transfer. Here we detail emerging perspectives on KR and its role in neurotransmission. We additionally formulate a restraining force hypothesis as a plausible mechanistic basis for KR and its physiological modulation in small nerve terminals. Clarification of the mechanism and function of KR has bearing on understanding the kinetic transitions underlying SNARE-mediated fusion, interactions between vesicles and their local environment, and the influence of release dynamics on neural information processing.


Assuntos
Endocitose/fisiologia , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Transmissão Sináptica/fisiologia , Animais , Membrana Celular/fisiologia , Humanos , Proteínas SNARE/fisiologia , Vesículas Secretórias/fisiologia , Sinapses/fisiologia
3.
Nature ; 450(7168): 370-5, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18004375

RESUMO

Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein-lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target.


Assuntos
Sequência Conservada , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Condutividade Elétrica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Conformação Proteica , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Venenos de Aranha/farmacologia , Xenopus
4.
Cold Spring Harb Perspect Biol ; 4(8): a013680, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22745285

RESUMO

Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.


Assuntos
Modelos Biológicos , Rede Nervosa/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/classificação , Vesículas Sinápticas/fisiologia , Animais , Corantes Fluorescentes , Proteínas de Fluorescência Verde , Compostos de Piridínio , Pontos Quânticos , Compostos de Amônio Quaternário , Vesículas Sinápticas/metabolismo
5.
Nat Struct Mol Biol ; 16(10): 1080-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19783984

RESUMO

Voltage-activated ion channels open and close in response to changes in voltage, a property that is essential for generating nerve impulses. Studies on voltage-activated potassium (Kv) channels show that voltage-sensor activation is sensitive to the composition of lipids in the surrounding membrane. Here we explore the interaction of lipids with S1-S4 voltage-sensing domains and find that the conversion of the membrane lipid sphingomyelin to ceramide-1-phosphate alters voltage-sensor activation in an S1-S4 voltage-sensing protein lacking an associated pore domain, and that the S3b-S4 paddle motif determines the effects of lipid modification on Kv channels. Using tarantula toxins that bind to paddle motifs within the membrane, we identify mutations in the paddle motif that weaken toxin binding by disrupting lipid-paddle interactions. Our results suggest that lipids bind to voltage-sensing domains and demonstrate that the pharmacological sensitivities of voltage-activated ion channels are influenced by the surrounding lipid membrane.


Assuntos
Ativação do Canal Iônico/fisiologia , Lipídeos/química , Venenos de Aranha/metabolismo , Animais , Membrana Celular/metabolismo , Cristalografia por Raios X/métodos , Canais Iônicos/química , Modelos Biológicos , Diester Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/química , Canais de Potássio Shab/química , Esfingomielinas/química , Venenos de Aranha/química , Aranhas , Propriedades de Superfície , Termodinâmica
6.
Am J Physiol Heart Circ Physiol ; 288(1): H424-35, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15374824

RESUMO

Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model.


Assuntos
Frequência Cardíaca , Modelos Cardiovasculares , Adulto , Eletrocardiografia , Feminino , Humanos , Funções Verossimilhança , Masculino , Distribuição Normal , Teste da Mesa Inclinada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA