Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744918

RESUMO

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

2.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
3.
Drug Metab Dispos ; 48(10): 1084-1091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719085

RESUMO

Commercial formulations of 29 commonly used herbal supplements (HSs) and grapefruit juice were evaluated for drug interaction potential via quantification of their CYP3A inhibitory potential in two in vitro experimental models of human small intestine, cryopreserved human intestinal mucosa (CHIM), and cryopreserved human enterocytes (CHEs). Two CYP3A substrates were used-in the studies with CHIM, CYP3A activity was quantified via liquid chromatography tandem mass spectrometry quantification of midazolam 1'-hydroxylation, whereas in CHE, luciferin-IPA metabolism to luciferin was quantified by luminescence. Upon treatment of CHIM with the estimated lumen concentration of the HS upon each oral administration (manufacturers' recommended dosage dissolved in 200 ml of culture medium), >80% CYP3A inhibition was observed for green tea extract, St. John's wort, valerian root, horehound, and grapefruit juice. Less than 50% inhibition was observed for fenugreek, aloe vera, guarana, soy isoflavone, maca, echinacea, spirulina, evening primrose, milk thistle, cranberry, red yeast rice, rhodiola, ginkgo biloba, turmeric, curcumin, white kidney bean, garlic, cinnamon, saw palmetto berries, panax ginseng, black elderberry, wheat grass juice, flaxseed oil, black cohosh, and ginger root. The results were confirmed in a a dose-response study with HSs obtained from three suppliers for the four inhibitory HSs (green tea extract, horehound, St. John's wort, valerian root) and three representative noninhibitory HSs (black cohosh, black elderberry, echinacea). Similar results were obtained with the inhibitory HSs in CHE. The results illustrate that CHIM and CHE represent physiologically relevant in vitro experimental models for the evaluation of drug interaction potential of herbal supplements. Based on the results, green tea extract, horehound, St. John's wort, and valerian root may cause drug interactions with orally administered drugs that are CYP3A substrates, as was observed for grapefruit juice. SIGNIFICANCE STATEMENT: In vitro evaluation of 29 popular herbal supplements in cryopreserved human intestinal mucosa identified green tea extract, horehound, St. John's wort, and valerian root to have CYP3A inhibitory potential similar to that for grapefruit juice, suggesting their potential to have clinically significant pharmacokinetic interaction with orally administered drugs that are CYP3A substrates. The results suggest that cryopreserved human intestinal mucosa can be used for in vitro evaluation of drug interactions involving enteric drug metabolism.


Assuntos
Citrus paradisi/química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Suplementos Nutricionais/efeitos adversos , Sucos de Frutas e Vegetais/efeitos adversos , Acetais/administração & dosagem , Acetais/farmacocinética , Administração Oral , Adulto , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Enterócitos , Feminino , Luciferina de Vaga-Lumes/administração & dosagem , Luciferina de Vaga-Lumes/análogos & derivados , Luciferina de Vaga-Lumes/farmacocinética , Interações Alimento-Droga , Interações Ervas-Drogas , Humanos , Mucosa Intestinal , Masculino , Midazolam/administração & dosagem , Midazolam/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
4.
Drug Metab Dispos ; 46(11): 1562-1571, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30006371

RESUMO

We report here a novel in vitro enteric experimental system, cryopreserved human intestinal mucosa (CHIM), for the evaluation of enteric drug metabolism, drug-drug interaction, drug toxicity, and pharmacology. CHIM was isolated from the small intestines of four human donors. The small intestines were first dissected into the duodenum, jejunum, and ileum, followed by collagenase digestion of the intestinal lumen. The isolated mucosa was gently homogenized to yield multiple cellular fragments, which were then cryopreserved in a programmable liquid cell freezer and stored in liquid nitrogen. After thawing and recovery, CHIM retained robust cytochrome P450 (P450) and non-P450 drug-metabolizing enzyme activities and demonstrated dose-dependent induction of transcription of CYP24A1 (approximately 300-fold) and CYP3A4 (approximately 3-fold) by vitamin D3 as well as induction of CYP3A4 (approximately 3-fold) by rifampin after 24 hours of treatment. Dose-dependent decreases in cell viability quantified by cellular ATP content were observed for naproxen and acetaminophen, with higher enterotoxicity observed for naproxen, consistent with that observed in humans in vivo. These results suggest that CHIM may be a useful in vitro experimental model for the evaluation of enteric drug properties, including drug metabolism, drug-drug interactions, and drug toxicity.


Assuntos
Indutores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica/fisiologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Taxa de Depuração Metabólica/fisiologia , Preparações Farmacêuticas/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Criopreservação/métodos , Interações Medicamentosas/fisiologia , Humanos
5.
Xenobiotica ; 48(8): 764-769, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28891378

RESUMO

1. Ritonavir and cobicistat are pharmacokinetic boosting agents used to increase systemic exposure to other antiretroviral therapies. The manufacturer's data suggests that cobicistat is a more selective CYP3A4 inhibitor than ritonavir. However, the inhibitory effect of ritonavir and cobicistat on human UDP glucuronosyltransferase (UGT) enzymes in Phase II metabolism is not established. This study evaluated the inhibition of human UGT isoforms by ritonavir versus cobicistat. 2. Acetaminophen and ibuprofen were used as substrates to evaluate the metabolic activity of the principal human UGTs. Metabolite formation rates were determined by HPLC analysis of incubates following in vitro incubation of index substrates with human liver microsomes (HLMs) at different concentrations of ritonavir or cobicistat. Probenecid and estradiol served as positive control inhibitors. 3. The 50% inhibitory concentrations (IC50) of cobicistat and ritonavir were at least 50 µM, which substantially exceeds usual clinical plasma concentrations. Probenecid inhibited the glucuronidation of acetaminophen (IC50 0.7 mM), but not glucuronidation of ibuprofen. At relatively high concentrations, estradiol inhibited ibuprofen glucuronidation (IC50 17 µM). 4. Ritonavir and cobicistat are unlikely to produce clinically important drug interactions involving drugs metabolized to glucuronide conjugates by UGT1A1, 1A3, 1A6, 1A9, 2B4 and 2B7.


Assuntos
Cobicistat/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/enzimologia , Ritonavir/farmacologia , Glucuronosiltransferase/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo
6.
Res Sq ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37674709

RESUMO

The combination of native electrospray ionisation with top-down fragmentation in mass spectrometry allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and co-factors. While this approach is powerful, both native mass spectrometry and top-down mass spectrometry are not yet well standardised, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics (CTDP) initiated a study to develop and test protocols for native mass spectrometry combined with top-down fragmentation of proteins and protein complexes across eleven instruments in nine laboratories. The outcomes are summarised in this report to provide robust benchmarks and a valuable entry point for the scientific community.

7.
Pharmacol Res Perspect ; 8(5): e00645, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851819

RESUMO

We have previously reported successful isolation and cryopreservation of human intestinal mucosa (CHIM) with retention of viability and drug metabolizing enzyme activities. Here we report the results of the quantification of drug metabolizing enzyme activities in CHIM from different regions of the small intestines from 14 individual donors. CHIM were isolated from the duodenum, jejunum, and ileum of 10 individuals, and from 10 consecutive 12-inch segments starting from the pyloric sphincter of human small intestines from four additional individuals. P450 and non-P450 drug metabolizing enzyme activities (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A, UGT, SULT, FMO, MAO, AO, NAT1, and NAT2) were quantified via incubation with pathway-selective substrates. Quantifiable activities were observed for all pathways except for CYP2A6. Comparison of the duodenum, jejunum, and ileum in 10 donors shows jejunum had higher activities for CYP2C9, CYP3A, UGT, SULT, MAO, and NAT1. Further definition of regional variations with CHIM from ten 12-inch segments of the proximal small intestine shows that the segments immediately after the first 12-inch segment (duodenum) had the highest activity for most of the drug metabolizing enzymes but with substantial differences among the four donors. Our overall results demonstrate that there are substantial individual differences in drug metabolizing enzymes and that jejunum, especially the regions immediately after the duodenum, had the highest drug metabolizing enzyme activities.


Assuntos
Duodeno/enzimologia , Íleo/enzimologia , Jejuno/enzimologia , Adulto , Arilamina N-Acetiltransferase/metabolismo , Criopreservação , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Isoenzimas/metabolismo , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Monoaminoxidase/metabolismo , Sulfotransferases/metabolismo , Doadores de Tecidos , Adulto Jovem
8.
J Pharm Pharmacol ; 71(3): 371-378, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30417385

RESUMO

OBJECTIVES: Resveratrol is a naturally occurring antioxidant with therapeutic potential in prevention and treatment of neoplastic disease and other human disorders. However, net clearance of resveratrol in humans is very high, mainly due to glucuronide conjugation. This leads to extensive presystemic extraction and low plasma concentrations after oral dosage. The present study evaluated the effect of probenecid, an inhibitor of glucuronide conjugation, on resveratrol metabolism in vitro. METHODS: Biotransformation of resveratrol to its 3-O-glucuronide and 4'-O-glucuronide conjugates was studied in vitro using human liver microsomal preparations. The mechanism and inhibitory potency of probenecid were evaluated based on a mixed competitive-noncompetitive inhibition model. KEY FINDINGS: Probenecid inhibition of resveratrol 3-O-glucuronidation was predominantly noncompetitive, with an inhibition constant (Ki ) averaging 3.1 mm. CONCLUSIONS: The ratio of in vivo maximum concentration of probenecid [I] during usual clinical use to the in vitro Ki value ([I]/Ki ) exceeds the boundary value of 0.1, used by regulatory agencies to identify the possibility of clinical drug interactions. This finding, together with the known property of probenecid as an inhibitor of glucuronide conjugation in humans, suggests that probenecid could serve as a pharmacokinetic boosting agent to enhance systemic exposure to resveratrol in humans.


Assuntos
Glucuronídeos/metabolismo , Probenecid/farmacologia , Resveratrol/farmacologia , Interações Medicamentosas/fisiologia , Glucuronosiltransferase/metabolismo , Humanos , Microssomos Hepáticos/metabolismo
9.
J Pharm Pharmacol ; 69(12): 1794-1801, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28990653

RESUMO

OBJECTIVES: The direct-acting protease inhibitor paritaprevir is a new pharmaco-logic option available for treatment of chronic hepatitis C (HCV). Paritaprevir is reported to inhibit human UGT 1A1, but the mechanism of inhibition and its possible clinical consequences are not established. Our objective was to evaluate the in-vitro metabolic interaction between paritaprevir and the oral contraceptive steroid ethinyl estradiol (EE), a UGT 1A1 substrate. METHODS: Enzyme kinetic parameters were determined using human liver microsomes for the biotransformation of EE to its glucuronide metabolites, and the potency and mechanism of inhibition by paritaprevir. Probenecid was used as a reference inhibitor for purposes of assay validation. KEY FINDINGS: The underlying pattern of EE kinetics was complex, with evidence of substrate inhibition. The in-vitro inhibition constant (Ki ) value for paritaprevir vs EE on average was 20 µm and was consistent with a competitive inhibition mechanism. The ratio of in-vivo maximum plasma concentration of paritaprevir to in-vitro Ki was <0.1. CONCLUSIONS: Paritaprevir is an in-vitro inhibitor of UGT 1A1. However, the in-vitro Ki value relative to maximum clinical plasma concentrations is below the threshold to trigger a recommendation for pharmacokinetic drug interaction studies.


Assuntos
Antivirais/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Adolescente , Adulto , Idoso , Antivirais/farmacocinética , Criança , Pré-Escolar , Ciclopropanos , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Etinilestradiol/metabolismo , Humanos , Lactamas Macrocíclicas , Compostos Macrocíclicos/farmacocinética , Masculino , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Probenecid/farmacologia , Prolina/análogos & derivados , Sulfonamidas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA