RESUMO
BACKGROUND: Mucolipidosis type IV (MLIV) is a rare, progressive lysosomal storage disorder characterized by severe intellectual disability, delayed motor milestones and ophthalmologic abnormalities. MLIV is an autosomal recessive disease caused by mutations in the MCOLN1 gene, encoding mucolipin-1 which is responsible for maintaining lysosomal function. OBJECTIVES AND METHODS: Here, we report a family of four Iranian siblings with cognitive decline, progressive visual and pyramidal disturbances, and abnormal movements manifested by severe oromandibular dystonia and parkinsonism. MRI scans of the brain demonstrated signal abnormalities in the white matter and thinning of the corpus callosum. RESULTS AND CONCLUSIONS: Whole-exome sequencing identified a novel homozygous variant, c.362C > T:p. Thr121Met in the MCOLN1 gene consistent with a diagnosis of MLIV. The presentation of MLIV may overlap with a variety of other neurological diseases, and genetic analysis is an important strategy to clarify the diagnosis. This is an important point that clinicians should be familiar with. The novel variant c.362C > T:p. Thr121Met herein described may be related to a comparatively older age at onset. Our study also expands the clinical spectrum of MLIV associated with the MCOLN1 variants and introduces a novel likely pathogenic variant for testing in MLIV cases that remain unresolved.
RESUMO
INTRODUCTION: Mutations in JAM2 have been linked to ~ 2% of primary familial brain calcification (PFBC) cases. PFBC is a rare neurological disorder characterized by excessive calcium deposition in the brain. It causes movement disorders and psychiatric problems. Six other genes were identified as causing PFBC. However, the genetic basis of ~ 50% of PFBC cases remains unknown. This study presented the results of a comprehensive analysis of five unrelated Iranian PFBC families. METHODS: Clinical and paraclinical features of all patients were recorded. Whole-exome sequencing (WES) was done on the DNAs of probands. Data was analyzed, and haplotypes were determined. RESULTS: WES identified two homozygous variants in JAM2 across four families: a novel variant, c.426dup:p.Ser143Leufs*23, in one family and a known mutation, c.685C > T:p.Arg229*, in the remaining three families. Haplotype analysis using six intragenic single-nucleotide polymorphisms (SNPs) in JAM2 revealed an identical haplotype in probands who carried the same mutation, whereas two other probands presented diverse haplotypes. CONCLUSION: Based on our results, p.Arg229* may be a founder mutation in the Iranian population. The variant has been detected in two out of seven other reported JAM2-related families who may originate from the Middle East and exhibit an identical haplotype. Even though this particular mutation may not be classified as a founder mutation, it does appear to be a hotspot, given that it has been observed in 45% of the 11 JAM2-associated families. Our study expanded the clinical features and mutation spectrum of JAM2 and revealed that mutations in JAM2 may be more common than previously reported.
Assuntos
Encefalopatias , Calcinose , Linhagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encefalopatias/genética , Calcinose/genética , Moléculas de Adesão Celular/genética , Efeito Fundador , Haplótipos , Irã (Geográfico) , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismoRESUMO
BACKGROUND: NBIA (neurodegeneration with brain iron accumulation) is a diverse collection of neurodegenerative illnesses defined by iron accumulation in the basal ganglia. The fatty acid hydroxylase-associated neurodegeneration, or FAHN, is one of the uncommon subtypes of NBIAs, associated with inherited autosomal recessive mutations in gene coding the membrane-bound fatty acid 2 hydroxylase (FA2H) enzyme. CASES: Here, we report two cases with FAHN from two unrelated families from Iran confirmed by whole exome sequencing. CONCLUSION: FAHN is an uncommon variant of NBIA that may manifest as spastic paraparesis without signs of iron buildup on brain imaging. As a result, it should be taken into account while making a differential diagnosis of the hereditary spastic paraplegia (HSP) syndrome, especially in individuals who lack iron deposits.
Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Neurodegeneração Associada a Pantotenato-Quinase , Paraplegia Espástica Hereditária , Humanos , Encéfalo/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Irã (Geográfico) , Ferro , Mutação/genética , Neurodegeneração Associada a Pantotenato-Quinase/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genéticaRESUMO
Mutations in ERLIN2 and MFN2 lead to the development of spastic paraplegia-18 (SPG18) and Charcot-Marie-Tooth type-2A (CMT2A), respectively. These disorders are unified by the fact that both can be termed inherited axonopathies. With whole-exome sequencing (WES), more patients of neurological disorders with clinical overlaps receive a genetic result than ever before. This study describes an Iranian family who harbor mutations in ERLIN2 and MFN2, simultaneously. The proband was a 73-year old man who has experienced weakness and spasticity of lower limbs since late childhood. He was diagnosed with hereditary spastic paraplegia (HSP). His WES identified a novel homozygous variant in ERLIN2 as well as a known heterozygous variant in MFN2. These variants were cosegregated with the phenotypes among the family members. His sister with a similar phenotype just carried the homozygous ERLIN2 variant, whereas, his asymptomatic brother and daughter carried the heterozygous variant of MFN2. Re-evaluation of the MFN2 variant carriers by nerve conduction study revealed that only the proband's daughter has peripheral neuropathy. Herein, using WES two distinct disease-causing variants with different modes of inheritance in ERLIN2 and MFN2 were detected in the proband. As expected, individuals with a defined MFN2 variant, p.Arg468His, were asymptomatic or had a mild phenotype. The co-occurrence of such diseases, SPG18 and CMT2A, may result in the milder phenotype to be overlooked or its features considered as a part of the symptoms of other disease. Certainly, providing genetic counseling in such cases can be challenging. These cases reveal the importance of WES.
RESUMO
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Assuntos
Distúrbios do Metabolismo do Ferro , Gânglios da Base , Encéfalo/patologia , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Humanos , Irã (Geográfico) , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/genética , MutaçãoRESUMO
BACKGROUND AND OBJECTIVE: Hereditary spastic paraplegia (HSP) is a heterogeneous neurodegenerative disorder with lower-limb spasticity and weakness. Different patterns of inheritance have been identified in HSP. Most autosomal-dominant HSPs (AD-HSPs) are associated with mutations of the SPAST gene (SPG4), leading to a pure form of HSP with variable age-at-onset (AAO). Anticipation, an earlier onset of disease, as well as aggravation of symptoms in successive generations, may be correlated to SPG4. Herein, we suggested that anticipation might be a relatively common finding in SPG4 families. METHODS: Whole-exome sequencing was done on DNA of 14 unrelated Iranian AD-HSP probands. Data were analyzed, and candidate variants were PCR-amplified and sequenced by the Sanger method, subsequently checked in family members to co-segregation analysis. Multiplex ligation-dependent probe amplification (MLPA) was done for seven probands. Clinical features of the probands were recorded, and the probable anticipation was checked in these families. Other previous reported SPG4 families were investigated to anticipation. RESULTS: Our findings showed that SPG4 was the common subtype of HSP; three families carried variants in the KIF5A, ATL1, and MFN2 genes, while five families harbored mutations in the SPAST gene. Clinical features of only SPG4 families indicated decreasing AAO in affected individuals of the successive generations, and this difference was significant (p-value <0.05). CONCLUSION: It seems SPAST will be the first candidate gene in families that manifests a pure form of AD-HSP and anticipation. Therefore, it may be a powerful situation of genotype-phenotype correlation. However, the underlying mechanism of anticipation in these families is not clear yet.
Assuntos
Paraplegia Espástica Hereditária , Adenosina Trifosfatases/genética , Proteínas de Ligação ao GTP/genética , Humanos , Irã (Geográfico) , Cinesinas/genética , Proteínas de Membrana/genética , Mutação/genética , Fenótipo , Paraplegia Espástica Hereditária/genética , Espastina/genéticaRESUMO
INTRODUCTION: Lafora disease (LD) is a severe form of progressive myoclonus epilepsy characterized by generalized seizures, myoclonus, intellectual decline, ataxia, spasticity, dysarthria, visual loss, and in later stages, psychosis and dementia. To date, mutations in the EPM2A and EPM2B/NHLRC1 genes have been identified as the common causes of LD. However, a mutation in PRDM8 has been reported only once in a Pakistani family affected with early-onset Lafora disease. In the present study, we report the second family with a PRDM8 mutation. METHODS: Two affected individuals of an Iranian family initially diagnosed as complicated hereditary spastic paraplegia (HSP) underwent careful neurologic examination. Homozygosity mapping and whole-exome sequencing were performed. Based on the results of genetic analysis to detection of Lafora bodies, a skin biopsy was done. RESULTS: The clinical features of the patients were described. Linkage to chromosome 4 and a mutation in the PRDM8 gene were identified, suggesting the patients may be affected with early-onset LD. However, like the Pakistani family, the search for Lafora bodies in their skin biopsies was negative. Their electroencephalograms showed generalized epileptiform discharges in the absence of clinical seizures. CONCLUSIONS: The current study increases the number of PRDM8-related cases and expands the phenotypic spectrum of mutations in the PRDM8 gene. Both reported PRDM8-related families presented intra and inter-familial heterogeneity and they have originated from the Middle East. Thus, it seems the PRDM8 mutations should be considered not only in LD but also in other neurodegenerative disorders such as a complicated HSP-like phenotype, especially in this region.
Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Paraplegia Espástica Hereditária , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Histona Metiltransferases/genética , Humanos , Irã (Geográfico) , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/patologia , Mutação/genética , Convulsões , Paraplegia Espástica Hereditária/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous neurodegenerative disorder, characterized by lower-limb spasticity and weakness. To date, more than 82 loci/genes (SPG1-SPG82) have been identified that contribute to the cause of HSP. Despite the use of next-generation sequencing-based methods, genetic-analysis has failed in the finding of causative genes in more than 50% of HSP patients, indicating a more significant heterogeneity and absence of a given phenotype-genotype correlation. Here, we performed whole-exome sequencing (WES) to identify HSP-causing genes in three unrelated-Iranian probands. Candidate variants were detected and confirmed in the probands and co-segregated in the family members. The phenotypic data gathered and compared with earlier cases with the same sub-types of disease. Three novel homozygous variants, c.978delT; p.Q327Kfs*39, c.A1208G; p.D403G and c.3811delT; p.S1271Lfs*44, in known HSP-causing genes including ENTPD1, CYP7B1, and ZFYVE26 were identified, respectively. Intra and interfamilial clinical variability were observed among affected individuals. Mutations in CYP7B1 and ZFYVE26 are relatively common causes of HSP and associated with SPG5A and SPG15, respectively. However, mutations in ENTPD1 are related to SPG64 which is an ultra-rare form of HSP. The research affirmed more complexities of phenotypic manifestations and allelic heterogeneity in HSP. Due to these complexities, it is not feasible to show a clear phenotype-genotype correlation in HSP cases. Identification of more families with mutations in HSP-causing genes may help the establishment of this correlation, further understanding of the molecular basis of the disease, and would provide an opportunity for genetic-counseling in these families.
Assuntos
Apirase/genética , Proteínas de Transporte/genética , Família 7 do Citocromo P450/genética , Paraplegia Espástica Hereditária/genética , Esteroide Hidroxilases/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/fisiopatologia , Sequenciamento do Exoma , Adulto JovemRESUMO
Coenzyme Q10/ COQ10 , an essential cofactor in the electron-transport chain is involved in ATP production. Primary COQ10 deficiency is clinically and genetically a heterogeneous group of mitochondrial disorders caused by defects in the COQ10 synthesis pathway. Its mode of inheritance is autosomal recessive and it is characterized by metabolic abnormalities and multisystem involvement including neurological features. Mutations in 10 genes have been identified concerning this group of diseases, so far. Among those, variants of the COQ7 gene are very rare and confined to three patients with Asian ancestry. Here, we present the clinical features and results of whole-exome sequencing (WES) of three Iranian unrelated families affected by primary COQ10 deficiency. Three homozygous variants in COQ2, COQ4, and COQ7 genes were identified. Candidate variants of the COQ2 and COQ4 genes were novel and associated with the cerebellar signs and multisystem involvement, whereas, the known variant in COQ7 was associated with a mild phenotype that was initially diagnosed as hereditary spastic paraplegia (HSP). This variant has already been reported in a Canadian girl with similar presentations that also originated from Iran suggesting both patients may share a common ancestor. Due to extensive heterogeneity in this group of disorders, and overlap with other mitochondrial/neurological disorders, WES may be helpful to distinguish primary coenzyme Q10 deficiency from other similar conditions. Given that some features of primary coenzyme Q10 deficiency may improve with exogenous COQ10 , early diagnosis is very important.
Assuntos
Alquil e Aril Transferases/genética , Ataxia/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Oxigenases de Função Mista/genética , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/epidemiologia , Ataxia/patologia , Canadá/epidemiologia , Criança , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Irã (Geográfico)/epidemiologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/patologia , Debilidade Muscular/epidemiologia , Debilidade Muscular/patologia , Mutação/genética , Ubiquinona/genética , Sequenciamento do ExomaRESUMO
PURPOSE: SPG76 is one of the rare forms of hereditary spastic paraplegia (HSP) which causes by mutations in the CAPN1 gene. The mode of inheritance of SPG76 is autosomal recessive (AR) and so far, only 24 families and 25 mutations in this gene have been reported worldwide. These mutations have been associated with a spectrum of disorders from pure HSP to spastic ataxia. HSP genetically is one of the most heterogeneous neurological disorders and to date, 79 types of HSP (SPG1-SPG79) have been identified, however, it has been suggested that many HSP-genes, particularly in AR-HSPs, remained unknown. AR-HSPs clinically overlap with other neurodegenerative disorders, making an accurate diagnosis of the disease difficult. Therefore, in addition to clinical examination, a high throughout genetic method like whole exome sequencing (WES) may be necessary for the diagnosis of this type of neurodegenerative disorders. METHODS AND RESULTS: Herein, we present the clinical features and results of WES in the first Iranian family with a novel CAPN1 variant, c.C853T:p.R285* and pure HSP. CONCLUSION: Some of the previous studies have mentioned that the "spasticity-ataxia phenotype might be conducted to the diagnosis of SPG76" but recently the number of pure HSP patients with CAPN1 mutation is increasing. The present study also expands the mutation spectrum of pure CAPN1-related SPG76; emphasizing that CAPN1 screening is required in both pure HSP and spasticity-ataxia phenotypes. As noted in some other literature, we suggest the clinical spectrum of this disorder to be considered as "CAPN1-associated neurodegeneration".
Assuntos
Calpaína/genética , Paraplegia Espástica Hereditária/genética , Adulto , Feminino , Estudos de Associação Genética , Humanos , Irã (Geográfico) , Masculino , Linhagem , IrmãosRESUMO
Premature ovarian insufficiency (POI) is a clinically and etiologically heterogeneous disorder characterized by menstrual irregularities and elevated levels of FSH before age of 40 years. Genetic anomalies are among the recognized causes of POI. Here, we aimed to identify the genetic cause of POI in an inbred pedigree with nine POI and two ichthyosis-affected members. Inheritance of POI and ichthyosis were, respectively, dominant and recessive. Reproduction-related information and measurements of relevant hormones were obtained. Genetic studies included homozygosity mapping, linkage analysis, exome sequencing, and screening of candidate variants. A mutation within ALOX12B, which is a known ichthyosis causing gene, was identified as cause of ichthyosis. ALOX12B encodes a protein involved in steroidogenesis and lipid metabolism. Considering the importance of steroidogenesis in reproduction functions, the possibility that the ALOX12B mutation is also cause of POI was considered. Screenings showed that the mutation segregated with POI status. Linkage analysis with respect to POI identified a single strongly linked locus (LOD > 3) that includes ALOX12B. Exome sequencing on POI-affected females identified the mutation in ALOX12B and also a sequence variation in SPNS2 within the linked locus. A possible contribution of the SPNS2 variation to POI was not strictly ruled out, but various data presented in the text including reported association of variations in related gene ALOX12 with menopause-age and role of ALOX12B in atretic bovine follicle formation argue in favor of ALOX12B. It is, therefore, concluded that the mutation in ALOX12B is the likely cause of POI in the pedigree.
Assuntos
Proteínas de Transporte de Ânions/genética , Araquidonato 12-Lipoxigenase/genética , Ictiose/genética , Insuficiência Ovariana Primária/genética , Adulto , Consanguinidade , Feminino , Ligação Genética/genética , Predisposição Genética para Doença , Homozigoto , Humanos , Ictiose/complicações , Ictiose/patologia , Irã (Geográfico)/epidemiologia , Metabolismo dos Lipídeos/genética , Menopausa Precoce/genética , Mutação/genética , Linhagem , Insuficiência Ovariana Primária/complicações , Insuficiência Ovariana Primária/patologia , Sequenciamento do ExomaRESUMO
Purpose: Peters anomaly (PA) is a heterogeneous developmental disorder characterized by central corneal opacity and iridocorneal or corneolenticular adhesions. Although many causative genes have been identified, most screened patients do not have mutations in the known genes. We aimed to identify the genetic cause of Peters anomaly in a pedigree with three affected individuals. Methods: Slit-lamp biomicroscopy and ultrasound biomicroscopy were performed for definitive diagnosis. Exome sequencing was conducted on the DNA of all three patients. After identification of a candidate causative gene, expression of the gene was assessed with real-time PCR in various ocular tissues of three human embryos and three adults. Results: The patients were affected with isolated PA. The parents of the patients were related to one another. Inheritance of PA was autosomal recessive. After appropriate filtering of the exome data, a homozygous variation in DOP1B remained as the only candidate genetic cause of PA in the pedigree. The variant segregated with disease status in the pedigree and was absent among 800 control Iranians. The variant has been reported in various databases at frequencies of 0.006 or less only in the heterozygous state in some cohorts of African origin. The p.Val1660 amino acid affected by the mutation is completely conserved in mammals and birds during evolution. Expression of DOP1B was shown in all adult and embryonic lens, iris, cornea, sclera, and retina tissues that were tested. Conclusions: DOP1B that encodes DOP1 leucine zipper like protein B was identified as the putative PA-causing gene in pedigree PA-101. As DOP1B is positioned within the Down syndrome chromosomal region on chromosome 21, until now this gene has mostly been studied with respect to brain functions. However, members of the Dopey gene family have been shown to have roles in development in other organisms. Evidence of the expression of DOP1B in various PA-relevant eye tissues, which, to the best of our knowledge, is shown here for the first time, is to be noted. However, this finding does not necessarily implicate a specific role for DOP1B in eye development as the gene is expressed in many tissues. Ultimately, definitive assessment of the contribution of DOP1B to PA pathology awaits identification of mutations in the gene in unrelated patients with PA and functional studies.
Assuntos
Segmento Anterior do Olho/anormalidades , Consanguinidade , Opacidade da Córnea/genética , Anormalidades do Olho/genética , Genes Recessivos , Mutação/genética , Proteínas de Transporte Vesicular/genética , Adulto , Segmento Anterior do Olho/diagnóstico por imagem , Sequência de Bases , Criança , Opacidade da Córnea/diagnóstico por imagem , Embrião de Mamíferos/metabolismo , Anormalidades do Olho/diagnóstico por imagem , Família , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Adulto JovemRESUMO
PURPOSE: It is estimated that 40-50% of infertility among human couples is due to male infertility. Azoospermia is estimated to occur in 1% of all men and to be the cause of 10-20% of male infertility. Genetic defects, including single gene effects, maybe cause of azoospermia in 20-30% of affected males. Here, we aim to identify the genetic cause of azoospermia in a man who is also affected by hereditary spastic paraplegia. METHODS: The proband was subjected to whole-exome sequencing, followed by a comprehensive in silico analysis to identify the azoospermia causative gene. RESULTS: A novel splice site mutation c.375-2A > G in SYCE1 that is thought to be the cause of azoospermia was identified. This variant co-segregated with azoospermia status in the family that has three additional affected males. CONCLUSION: SYCE1 gene encodes synaptonemal complex (SC) central element 1 protein which contributes to the formation of the synaptonemal complex during meiosis. Syce1 null male and female mice have been shown to be infertile. There have only been two reports on the effects of SYCE1 mutations in humans; it was shown as the cause of primary ovarian failure (POI) in one and as the cause of nonobstructive azoospermia (NOA) in another. We suggest that the mutation 375-2A > G, which affects the acceptor splice site within intron 6 of SYCE1, is the likely cause of azoospermia and subsequent infertility in the family studied. The finding constitutes the third report of SYCE1mutations that affect infertility in humans and further supports its contribution to this condition.
Assuntos
Azoospermia/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Infertilidade Masculina/genética , Adulto , Animais , Azoospermia/patologia , Códon sem Sentido/genética , Consanguinidade , Homozigoto , Humanos , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Camundongos , Mutação/genética , Linhagem , Sítios de Splice de RNA/genética , Sequenciamento do ExomaRESUMO
Charcot-Marie-Tooth (CMT) is a common neuropathy, and hereditary motor and sensory neuropathy with proximal predominance (HMSN-P) is a recently described rare neuromuscular disease. Although many genes have been implicated for CMT, TFG is the only known HMSN-P-causing gene. Within the framework of diagnostic criteria, clinical variation is evident among CMT-diagnosed and also HMSN-P-diagnosed individuals. Mutations that cause p.(Pro285Leu) and p.(Gly269Val) in TFG were earlier reported as cause of HMSN-P in two Iranian pedigrees. Here, we report the identification of p.(Gly269Val) in TFG as cause of CMT in a large Iranian pedigree. The clinical features of patients of the three pedigrees are presented and critically compared. Similarities between the two HMSN-P-diagnosed pedigrees with different TFG mutations, and differences between the two differentially diagnosed pedigrees with the same p.(Gly269Val) mutation were evident. The clinical features of the HMSN-P pedigree with the p.(Pro285Leu) and the CMT pedigree with the p.(Gly269Val) mutation were clearly congruent with the respective diagnoses, whereas the features of the HMSN-P-diagnosed pedigree with the p.(Gly269Val) were intermediate between the other two pedigrees. It is therefore suggested that the clinical features of the three Iranian pedigrees with TFG mutations and diagnosed with HMSN-P or CMT represent a continuum.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Mutação , Proteínas/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Doença de Charcot-Marie-Tooth/diagnóstico , Criança , Pré-Escolar , Feminino , Expressão Gênica , Heterozigoto , Humanos , Lactente , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Sequenciamento do ExomaRESUMO
BACKGROUND: Hereditary sensory and autonomic neuropathy type 2 (HSAN2) is an autosomal recessive disorder with predominant sensory dysfunction and severe complications such as limb destruction. There are different subtypes of HSAN2, including HSAN2A, which is caused by mutations in WNK1/HSN2 gene. METHODS: An Iranian family with four siblings and autosomal recessive inheritance pattern whom initially diagnosed with HSAN2 underwent whole exome sequencing (WES) followed by segregation analysis. RESULTS: According to the filtering criteria of the WES data, a novel candidate variation, c.3718C > A in WNK1/HSN2 gene that causes p.Tyr1025* was identified. This variation results in a truncated protein with 1025 amino acids instead of the wild-type product with 2645 amino acids. Sanger sequencing revealed that the mutation segregates with disease status in the pedigree. CONCLUSIONS: The identified novel nonsense mutation in WNK1/HSN2 in an Iranian HSAN2 pedigree presents allelic heterogeneity of this gene in different populations. The result of current study expands the spectrum of mutations of the HSN2 gene as the genetic background of HSAN2A as well as further supports the hypothesis that HSN2 is a causative gene for HSAN2A. However, it seems that more research is required to determine the exact effects of this product in the nervous system.
Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Códon sem Sentido , Feminino , Humanos , Irã (Geográfico) , Masculino , Linhagem , IrmãosRESUMO
Sarcoglycanopathies (SGCs) which are caused by mutations in SGCA, SGCB, SGCG or SGCD genes are a subgroup of autosomal-recessive limb-girdle-muscular-dystrophies (LGMD2). Although frequencies of mutations in these genes are different among populations, mutations in SGCA and SGCD, respectively, have the highest and lowest frequencies in most populations. Here, we report the proportion of mutations in SGC genes among a group of Iranian SGCs patients. Clinical features and results of SGC genes screening of 25 SGCs probands are presented. Large deletion mutations are confirmed with MLPA assays. In total, 15 candidate disease causing mutations were observed in the SGCA, SGCB, SGCG and SGCD genes; ten were novel. Fourteen (56%), seven (28%), three (12%) and one (4%) patient, respectively, carried mutations in SGCB, SGCG, SGCD and SGCA. The findings suggest that LGMD2E is the most common form of SGCs in the Iranian population and that LGMD2D is the rarest. Twelve LGMD2E cases carried the same mutation. To the best of knowledge, the mutation spectrum in SGCs is being reported for the first time in Iranian population. The finding will be beneficial for screening and genetic-counseling of SGCs patients in Iran.
Assuntos
Mutação/genética , Sarcoglicanopatias/epidemiologia , Sarcoglicanopatias/genética , Adolescente , Adulto , Criança , Saúde da Família , Feminino , Técnicas Genéticas , Haplótipos , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Estudos Retrospectivos , Adulto JovemRESUMO
BACKGROUND: Neurodegeneration with Brain Iron Accumulation (NBIA) disorder is a group of ultra-orphan hereditary diseases with very limited data on its course. OBJECTIVES: To estimate the probability of preserving ambulatory ability and survival in NBIA. METHODS: In this study, the electronic records of the demographic data and clinical assessments of NBIA patients from 2012 to 2023 were reviewed. The objectives of the study and factors impacting them were investigated by Kaplan-Meier and Cox regression methods. RESULTS: One hundred and twenty-two genetically-confirmed NBIA patients consisting of nine subtypes were enrolled. Twenty-four and twenty-five cases were deceased and wheelchair-bound, with a mean disease duration of 11 ± 6.65 and 9.32 ± 5 years. The probability of preserving ambulation and survival was 42.9% in 9 years and 28.2% in 15 years for classical Pantothenate Kinase-Associated Neurodegeneration (PKAN, n = 18), 89.4% in 7 years and 84.7% in 9 years for atypical PKAN (n = 39), 23% in 18 years and 67.8% in 14 years for Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN, n = 23), 75% in 20 years and 36.5% in 33 years for Kufor Rakeb Syndrome (KRS, n = 17), respectively. The frequencies of rigidity, spasticity, and female gender were significantly higher in deceased cases compared to surviving patients. Spasticity was the only factor associated with death (P value = 0.03). CONCLUSIONS: KRS had the best survival with the most extended ambulation period. The classical PKAN and MPAN cases had similar progression patterns to loss of ambulation ability, while MPAN patients had a slower progression to death. Spasticity was revealed to be the most determining factor for death.
Assuntos
Hemocromatose , Distúrbios do Metabolismo do Ferro , Doenças Neurodegenerativas , Neurodegeneração Associada a Pantotenato-Quinase , Transtornos Parkinsonianos , Humanos , Feminino , Encéfalo , Espasticidade Muscular , Caminhada , FerroRESUMO
INTRODUCTION: Riboflavin Transporter Deficiency (RTD) is a rare neurological disorder characterized by pontobulbar palsy, hearing loss, and motor cranial nerve involvement. SLC52A3 and SLC52A2 mutations are causes of RTD. SLC52A2 mutations are usually found in childhood onset cases. Fifteen Iranian RTD diagnosed patients without SLC52A2 mutations have been previously described. We aimed to identify causative mutations in two childhood cases. METHODS: We recruited patients with diagnosis of BVVL. Comprehensive clinical evaluations were performed on the patients. SLC52A3 and SLC52A2 genes were PCR-amplified and Sanger sequenced. Candidate disease causing variations were screened for segregation with disease status in the respective families and control individuals. RESULTS: A novel homozygous SLC52A3 mutation (p.Met1Val) and a heterozygous SLC52A2 mutation (p.Ala288Val) were both observed in one proband with typical RTD presentations. The aggregate of presentations in the early stages of disease in the second patient that included weakness in the lower extremities, absence of bulbar or hearing defects, prominent sensory polyneuropathy as evidenced in electrodiagnostic studies, and absence of sensory symptoms including sensory ataxia did not prompt immediate RTD diagnosis. Dysarthria and decreased hearing manifested later in the disease course. A novel homozygous SLC52A2 (p.Val314Met) mutation was identified. CONCLUSION: A literature search found recent reports of other atypical RTD presentations. These include MRI findings, speech understanding difficulties accompanied by normal hearing, anemia, and left ventricular non-compaction. Knowledge of unusual presentations lessens the chance of misdiagnosis or delayed RTD diagnosis which, in light of favorable effects of riboflavin supplementation, is of immense importance.