Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Rev Genet ; 23(5): 281-297, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34675394

RESUMO

Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.


Assuntos
Microbiota , Animais , Evolução Biológica , Microbiota/genética
2.
Mol Ecol ; 33(14): e17426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825980

RESUMO

The animal gut microbiota is strongly influenced by environmental factors that shape their temporal dynamics. Although diet is recognized as a major driver of gut microbiota variation, dietary patterns have seldom been linked to gut microbiota dynamics in wild animals. Here, we analysed the gut microbiota variation between dry and rainy seasons across four Sceloporus species (S. aeneus, S. bicanthalis, S. grammicus and S. spinosus) from central Mexico in light of temporal changes in diet composition. The lizard microbiota was dominated by Firmicutes (now Bacillota) and Bacteroidota, and the closely related species S. aeneus and S. bicanthalis shared a great number of core bacterial taxa. We report species-specific seasonal changes in gut microbiota diversity and composition: greater alpha diversity during the dry compared to the rainy season in S. bicanthalis, the opposite pattern in S. aeneus, and no seasonal differences in S. grammicus and S. spinosus. Our findings indicated a positive association between gut bacterial composition and dietary composition for S. bicanthalis and S. grammicus, but bacterial diversity did not increase linearly with dietary richness in any lizard species. In addition, seasonality affected bacterial composition, and microbial community similarity increased between S. aeneus and S. bicanthalis, as well as between S. grammicus and S. spinosus. Together, our results illustrate that seasonal variation and dietary composition play a role in shaping gut microbiota in lizard populations, but this is not a rule and other ecological factors influence microbiota variation.


Assuntos
Bactérias , Dieta , Microbioma Gastrointestinal , Lagartos , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Lagartos/microbiologia , México , Bactérias/classificação , Bactérias/genética , Artrópodes/microbiologia , RNA Ribossômico 16S/genética , Biodiversidade
3.
BMC Biol ; 21(1): 267, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993882

RESUMO

BACKGROUND: The red junglefowl, the wild outgroup of domestic chickens, has historically served as a reference for genomic studies of domestic chickens. These studies have provided insight into the etiology of traits of commercial importance. However, the use of a single reference genome does not capture diversity present among modern breeds, many of which have accumulated molecular changes due to drift and selection. While reference-based resequencing is well-suited to cataloging simple variants such as single-nucleotide changes and short insertions and deletions, it is mostly inadequate to discover more complex structural variation in the genome. METHODS: We present a pangenome for the domestic chicken consisting of thirty assemblies of chickens from different breeds and research lines. RESULTS: We demonstrate how this pangenome can be used to catalog structural variants present in modern breeds and untangle complex nested variation. We show that alignment of short reads from 100 diverse wild and domestic chickens to this pangenome reduces reference bias by 38%, which affects downstream genotyping results. This approach also allows for the accurate genotyping of a large and complex pair of structural variants at the K feathering locus using short reads, which would not be possible using a linear reference. CONCLUSIONS: We expect that this new paradigm of genomic reference will allow better pinpointing of exact mutations responsible for specific phenotypes, which will in turn be necessary for breeding chickens that meet new sustainability criteria and are resilient to quickly evolving pathogen threats.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Genótipo , Análise de Sequência de DNA , Genômica
4.
Crit Rev Biotechnol ; : 1-19, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731336

RESUMO

Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.

5.
Proc Natl Acad Sci U S A ; 116(21): 10418-10423, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061126

RESUMO

Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species' future ranges. We show that although evolutionary rescue is possible, it depends on a population's adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.


Assuntos
Adaptação Fisiológica/genética , Quirópteros/genética , Variação Genética/genética , Animais , Mudança Climática , Ecossistema , Previsões/métodos , Modelos Biológicos
6.
Mol Ecol ; 28(2): 484-502, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30187987

RESUMO

Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between many aspects of the host's biology, health and associated micro-organisms. Whereas amplicon sequencing has traditionally been used to characterize the microbiome, the increasing number of published population genomics data sets offers an underexploited opportunity to study microbial profiles from the host shotgun sequencing data. Here, we use sequence data originally generated from killer whale Orcinus orca skin biopsies for population genomics, to characterize the skin microbiome and investigate how host social and geographical factors influence the microbial community composition. Having identified 845 microbial taxa from 2.4 million reads that did not map to the killer whale reference genome, we found that both ecotypic and geographical factors influence community composition of killer whale skin microbiomes. Furthermore, we uncovered key taxa that drive the microbiome community composition and showed that they are embedded in unique networks, one of which is tentatively linked to diatom presence and poor skin condition. Community composition differed between Antarctic killer whales with and without diatom coverage, suggesting that the previously reported episodic migrations of Antarctic killer whales to warmer waters associated with skin turnover may control the effects of potentially pathogenic bacteria such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of microbiome studies from host shotgun sequencing data and highlights the importance of metagenomics in understanding the relationship between host and microbial ecology.


Assuntos
Metagenômica , Microbiota/genética , Pele/microbiologia , Orca/microbiologia , Animais , Regiões Antárticas , Diatomáceas/genética , Geografia , Orca/parasitologia
7.
Mol Ecol ; 27(5): 1273-1283, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411450

RESUMO

Niche partitioning through foraging is a mechanism likely involved in facilitating the coexistence of ecologically similar and co-occurring animal species by separating their use of resources. Yet, this mechanism is not well understood in flying insectivorous animals. This is particularly true of bats, where many ecologically similar or cryptic species coexist. The detailed analysis of the foraging niche in sympatric, cryptic sibling species provides an excellent framework to disentangle the role of specific niche factors likely involved in facilitating coexistence. We used DNA metabarcoding to determine the prey species consumed by a population of sympatric sibling Rhinolophus euryale and Rhinolophus mehelyi whose use of habitat in both sympatric and allopatric ranges has been well established through radio tracking. Although some subtle dietary differences exist in prey species composition, the diet of both bats greatly overlapped (Ojk  = 0.83) due to the consumption of the same common and widespread moths. Those dietary differences we did detect might be related to divergences in prey availabilities among foraging habitats, which prior radio tracking on the same population showed are differentially used and selected when both species co-occur. This minor dietary segregation in sympatry may be the result of foraging on the same prey-types and could contribute to reduce potential competitive interactions (e.g., for prey, acoustic space). Our results highlight the need to evaluate the spatial niche dimension in mediating the co-occurrence of similar insectivorous bat species, a niche factor likely involved in processes of bat species coexistence.


Assuntos
Quirópteros/genética , Código de Barras de DNA Taxonômico , Animais , Quirópteros/fisiologia , Demografia , Dieta , Ecossistema , Comportamento Alimentar , Mariposas/classificação , Dinâmica Populacional , Comportamento Predatório , Especificidade da Espécie
8.
Mol Ecol ; 27(3): 815-825, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290102

RESUMO

The interaction between agricultural production and wildlife can shape, and even condition, the functioning of both systems. In this study, we i) explored the degree to which a widespread European bat, namely the common bent-wing bat Miniopterus schreibersii, consumes crop-damaging insects at a continental scale, and ii) tested whether its dietary niche is shaped by the extension and type of agricultural fields. We employed a dual-primer DNA metabarcoding approach to characterize arthropod 16S and COI DNA sequences within bat faecal pellets collected across 16 Southern European localities, to first characterize the bat species' dietary niche, second measure the incidence of agricultural pests across their ranges and third assess whether geographical dietary variation responds to climatic, landscape diversity, agriculture type and vegetation productivity factors. We detected 12 arthropod orders, among which lepidopterans were predominant. We identified >200 species, 44 of which are known to cause agricultural damage. Pest species were detected at all but one sampling site and in 94% of the analysed samples. Furthermore, the dietary diversity of M. schreibersii exhibited a negative linear relation with the area of intensive agricultural fields, thus suggesting crops restrict the dietary niche of bats to prey taxa associated with agricultural production within their foraging range. Overall, our results imply that M. schreibersii might be a valuable asset for biological pest suppression in a variety of agricultural productions and highlight the dynamic interplay between wildlife and agricultural systems.


Assuntos
Agricultura , Artrópodes/fisiologia , Quirópteros/fisiologia , Código de Barras de DNA Taxonômico , Ecossistema , Metagenômica , Comportamento Predatório/fisiologia , Animais , Dieta , Europa (Continente) , Geografia , Especificidade da Espécie
9.
Front Zool ; 11(1): 77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389444

RESUMO

Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16°C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.

10.
J Exp Biol ; 217(Pt 18): 3318-25, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25013107

RESUMO

Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Peixes/anatomia & histologia , Insetos/anatomia & histologia , Comportamento Predatório/fisiologia , Animais , Tamanho Corporal
11.
Trends Ecol Evol ; 39(7): 616-620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777633

RESUMO

The Earth Hologenome Initiative (EHI) is a global collaboration to generate and analyse hologenomic data from wild animals and associated microorganisms using standardised methodologies underpinned by open and inclusive research principles. Initially focused on vertebrates, it aims to re-examine ecological and evolutionary questions by studying host-microbiota interactions from a systemic perspective.


Assuntos
Evolução Biológica , Microbiota , Animais , Ecologia , Genômica , Interações entre Hospedeiro e Microrganismos
12.
ISME Commun ; 4(1): ycae111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39346007

RESUMO

Shotgun metagenomics is a powerful tool for studying the genomic traits of microbial community members, such as genome size, gene content, etc. While such traits can be used to better understand the ecology and evolution of microbial communities, the accuracy of their estimations can be critically influenced by both known and unknown factors. One factor that can bias trait estimations is the proportion of eukaryotic and viral DNA in a metagenome, as some bioinformatic tools assume that all DNA reads in a metagenome are bacterial or archaeal. Here, we add to a recent debate about the influence of eukaryotic DNA in the estimation of average genome size from a global soil sample dataset using a new bioinformatic tool. Contrary to what was assumed, our reanalysis of this dataset revealed that soil samples can contain a substantial proportion of non-microbial DNA, which severely inflated the original estimates of average genome size. Correcting for this bias significantly improves the statistical support for the negative relationship between average bacterial genome size and soil pH. These results highlight that metagenomes can contain large quantities of non-microbial DNA and that new methods that correct for this can improve microbial trait estimation.

13.
Evol Appl ; 17(10): e70025, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39391863

RESUMO

Microorganisms associated with animals harbour a unique set of functional traits pivotal for the normal functioning of their hosts. This realisation has led researchers to hypothesise that animal-associated microbial communities may boost the capacity of their hosts to acclimatise and adapt to environmental changes, two eco-evolutionary processes with significant applied relevance. Aiming to assess the importance of microorganisms for wild vertebrate conservation, we conducted a quantitative systematic review to evaluate the scientific evidence for the contribution of gut microorganisms to the acclimation and adaptation capacity of wild vertebrate hosts. After screening 1974 publications, we scrutinised the 109 studies that met the inclusion criteria based on 10 metrics encompassing study design, methodology and reproducibility. We found that the studies published so far were not able to resolve the contribution of gut microorganisms due to insufficient study design and research methods for addressing the hypothesis. Our findings underscore the limited application to date of microbiome knowledge in vertebrate conservation and management, highlighting the need for a paradigm shift in research approaches. Considering these results, we advocate for a shift from observational studies to experimental manipulations, where fitness or related indicators are measured, coupled with an update in molecular techniques used to analyse microbial functions. In addition, closer collaboration with conservation managers and practitioners from the inception of the project is needed to encourage meaningful application of microbiome knowledge in adaptive wildlife conservation management.

14.
Cell Rep Methods ; 4(7): 100820, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986611

RESUMO

Holo-omics refers to the joint study of non-targeted molecular data layers from host-microbiota systems or holobionts, which is increasingly employed to disentangle the complex interactions between the elements that compose them. We navigate through the generation, analysis, and integration of omics data, focusing on the commonalities and main differences to generate and analyze the various types of omics, with a special focus on optimizing data generation and integration. We advocate for careful generation and distillation of data, followed by independent exploration and analyses of the single omic layers to obtain a better understanding of the study system, before the integration of multiple omic layers in a final model is attempted. We highlight critical decision points to achieve this aim and flag the main challenges to address complex biological questions regarding the integrative study of host-microbiota relationships.


Assuntos
Microbiota , Humanos , Metabolômica , Genômica , Proteômica/métodos , Biologia Computacional/métodos , Animais , Interações entre Hospedeiro e Microrganismos/genética
15.
Microbiol Spectr ; 12(4): e0359023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451230

RESUMO

Shotgun metagenomics enables the reconstruction of complex microbial communities at a high level of detail. Such an approach can be conducted using both short-read and long-read sequencing data, as well as a combination of both. To assess the pros and cons of these different approaches, we used 22 fecal DNA extracts collected weekly for 11 weeks from two respective lab mice to study seven performance metrics over four combinations of sequencing depth and technology: (i) 20 Gbp of Illumina short-read data, (ii) 40 Gbp of short-read data, (iii) 20 Gbp of PacBio HiFi long-read data, and (iv) 40 Gbp of hybrid (20 Gbp of short-read +20 Gbp of long-read) data. No strategy was best for all metrics; instead, each one excelled across different metrics. The long-read approach yielded the best assembly statistics, with the highest N50 and lowest number of contigs. The 40 Gbp short-read approach yielded the highest number of refined bins. Finally, the hybrid approach yielded the longest assemblies and the highest mapping rate to the bacterial genomes. Our results suggest that while long-read sequencing significantly improves the quality of reconstructed bacterial genomes, it is more expensive and requires deeper sequencing than short-read approaches to recover a comparable amount of reconstructed genomes. The most optimal strategy is study-specific and depends on how researchers assess the trade-off between the quantity and quality of recovered genomes.IMPORTANCEMice are an important model organism for understanding the gut microbiome. When studying these gut microbiomes using DNA techniques, researchers can choose from technologies that use short or long DNA reads. In this study, we perform an extensive benchmark between short- and long-read DNA sequencing for studying mice gut microbiomes. We find that no one approach was best for all metrics and provide information that can help guide researchers in planning their experiments.


Assuntos
Genoma Bacteriano , Microbiota , Animais , Camundongos , Análise de Sequência de DNA/métodos , Microbiota/genética , Metagenômica/métodos , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
16.
ISME Commun ; 3(1): 12, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797336

RESUMO

Inferring the functional capabilities of bacteria from metagenome-assembled genomes (MAGs) is becoming a central process in microbiology. Here we show that the completeness of genomes has a significant impact on the recovered functional signal, spanning all domains of metabolic functions. We identify factors that affect this relationship between genome completeness and function fullness, and provide baseline knowledge to guide efforts to correct for this overlooked bias in metagenomic functional inference.

17.
Trends Microbiol ; 31(10): 995-1002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37217368

RESUMO

Whether and how microorganisms have shaped the evolution of their animal hosts is a major question in biology. Although many animal evolutionary processes appear to correlate with changes in their associated microbial communities, the mechanistic processes leading to these patterns and their causal relationships are still far from being resolved. Gut-on-a-chip models provide an innovative approach that expands beyond the potential of conventional microbiome profiling to study how different animals sense and react to microbes by comparing responses of animal intestinal tissue models to different microbial stimuli. This complementary knowledge can contribute to our understanding of how host genetic features facilitate or prevent different microbiomes from being assembled, and in doing so elucidate the role of host-microbiota interactions in animal evolution.


Assuntos
Microbiota , Animais , Microbiota/genética , Modelos Animais , Interações entre Hospedeiro e Microrganismos , Dispositivos Lab-On-A-Chip
18.
mBio ; 14(5): e0160623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650630

RESUMO

IMPORTANCE: In our manuscript, we report the first interspecific comparative study about the plasticity of the gut microbiota. We conducted a captivity experiment that exposed wild-captured mammals to a series of environmental challenges over 45 days. We characterized their gut microbial communities using genome-resolved metagenomics and modeled how the taxonomic, phylogenetic, and functional microbial dynamics varied across a series of disturbances in both species. Our results indicate that the intrinsic properties (e.g., diversity and functional redundancy) of microbial communities coupled with physiological attributes (e.g., thermal plasticity) of hosts shape the taxonomic, phylogenetic, and functional response of gut microbiomes to environmental stressors, which might influence their contribution to the acclimation and adaptation capacity of animal hosts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Filogenia , Mamíferos , Metagenômica , RNA Ribossômico 16S
19.
Heliyon ; 9(1): e12861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699263

RESUMO

As metagenomic studies continue to increase in size and complexity, they are often required to incorporate data from geographically isolated locations or longitudinal time samples. This represents a technical challenge, given that many of the commonly used methods used for sample collection, storage, and DNA extraction are sensitive to differences related to the time, storage and chemistry involved. FTA cards have been previously proposed as a simple, reliable and cost-efficient method for the preservation of animal faecal microbiomes. In this study, we report a simplified extraction methodology for recovering microbiome DNA from faeces stored on FTA cards and compare its performance to a common alternative means of characterising such microbiomes; namely, immediate freezing of the faeces followed by DNA extraction using the Qiagen PowerSoil DNA isolation kit. Our results show that overall the application of our simplified DNA extraction methodology yields microbial community results that have higher diversity and an expanded core microbiome than that found using the PowerSoil methodology. This suggests that the FTA card extraction method presented here is a viable alternative for metagenomic studies using faecal material when traditional freeze-based storage methods are not feasible.

20.
Integr Zool ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550887

RESUMO

Diet composition and its ecological drivers are rarely investigated in coexisting closely related species. We used a molecular approach to characterize the seasonal variation in diet composition in four spiny lizard species inhabiting a mountainous ecosystem. DNA metabarcoding revealed that the lizards Sceloporus aeneus, S. bicanthalis, S. grammicus, and S. spinosus mostly consumed arthropods of the orders Hemiptera, Araneae, Hymenoptera, and Coleoptera. The terrestrial lizards S. aeneus and S. bicanthalis mostly predated ants and spiders, whereas the arboreal-saxicolous S. grammicus and saxicolous S. spinosus largely consumed grasshoppers and leafhoppers. The taxonomic and phylogenetic diversity of the prey was higher during the dry season than the rainy season, likely because reduced prey availability in the dry season forced lizards to diversify their diets to meet their nutritional demands. Dietary and phylogenetic composition varied seasonally depending on the species, but only dietary composition varied with altitude. Seasonal dietary turnover was greater in S. spinosus than in S. bicanthalis, suggesting site-specific seasonal variability in prey availability; no other differences among species were observed. S. bicanthalis, which lives at the highest altitude in our study site, displayed interseasonal variation in diet breadth. Dietary differences were correlated with the species' feeding strategies and elevational distribution, which likely contributed to the coexistence of these lizard species in the studied geographic area and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA