Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(3): e202302714, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37983723

RESUMO

Metal imine-thiolate complexes, M(NS)2 are known to undergo imine C-C bond formation to give M(N2 S2 ) complexes (M=Co, Ni) containing a redox-active ligand. Although these transfor-mations are not typically quantitative, we demonstrate here that the one-electron reduction of a related Ni bis(imine-thiolate) complex affords the corresponding paramagnetic [Ni(N2 S2 )]- anion (2⋅- ) exclusively; subsequent oxidation with [Cp2 Fe]BF4 then affords a high yield of neutral 2 (Cp=η5 -cyclopentadienyl). Moreover, electrochemical studies indicate that a second one-electron reduction affords the diamagnetic dianion. Both anionic products were isolated and characterized by SC-XRD and their electronic structures were investigated by UV-vis spectro-electrochemistry, EPR and NMR spectroscopy, and DFT studies. These studies show that reduction proceeds primarily on the ligand, with (N2 S2 )4- containing both thiolate and ring-delocalized anions.

2.
Inorg Chem ; 60(15): 10934-10942, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34242000

RESUMO

Nickel coordination chemistry with a biomimetic thiolate-imine-thioether SNSMe ligand is accompanied by diverse reactivity and multidentate ligand dynamics. Reaction of Ni(acac)2 with 2 equiv of 2-(methylthio)-phenyl-benzothiazolidine (MPB) affords the bis(arylimino-phenylene-thiolate) complex Ni(κ2-SNSMe)2 (1; acac = acetylacetonate). Thermolysis of 1 in refluxing toluene is accompanied by imine C-C bond formation, yielding [Ni(N2S2)] (2) with a redox-active ligand. Protonation of 1 with NHTf2 at a low temperature released 1 equiv of MPB, yielding crystals of the dimeric dication {[Ni(µ-κ3-SNSMe)]2}(NTf2)2 (3; Tf = SO2CF3) in high yield. In contrast, the same reaction at room temperature gave also paramagnetic complexes {Ni[µ-Ni(κ3-SNSMe)2]2}(NTf2)2 (4) and {Ni[µ-Ni(κ3-SNSMe)2]3}(NTf2)2 (5) that feature coordination of two or three pseudo-octahedral, paramagnetic Ni(κ3-SNSMe)2 units to a central Ni(II) dication via thiolate bridges. Remarkably, dissolution of 3 in a variety of solvents, including weakly coordinating CH2Cl2, rapidly generates a mixture of 4 and Ni(NTf)2. Treatment of this mixture with Lewis bases L gave high yields of dimers {[Ni(µ-κ3-SNSMe)L]2}(NTf2)2 for L = CNXylyl (6a) and {[Ni(µ-κ3-SNSMe)]2(µ-dmpm)}(NTf2)2 (6b; dmpm = bis(dimethylphosphino)methane) or monomers [Ni(κ3-SNSMe)L](NTf2) for L = PMe3 (7a) and P(OMe)3 (7b). Addition of 2 equiv of the strong donor N-heterocyclic carbene ligand, IPr, to 3, however, led to thioether demethylation, affording neutral dithiolate complex Ni(κ3-SNS)(IPr) (8). Reaction products were characterized by NMR and mass spectrometry and complexes 1-5, 6a, 6b, 7a, and 8 by single-crystal X-ray diffraction.

3.
Int J Toxicol ; 35(6): 672-682, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27461214

RESUMO

Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Manganês/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA