Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsy Behav ; 157: 109820, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823076

RESUMO

BACKGROUND: Efficient, non-invasive monitoring may provide a more accurate and comprehensive understanding of seizure frequency and the development of some comorbidities in people with epilepsy. Novel keyboard technology measuring digital keypress statistics has demonstrated its practical value for neurodegenerative diseases including Parkinson's Disease and Dementia. Smartphones integrated into daily life may serve as a low-burden longitudinal monitoring system for patients with epilepsy. OBJECTIVE: This study aimed to assess the feasibility of keyboard statistics as an objective measure of seizure frequency for patients with epilepsy, in addition to tracking differences between cognitively normal and cognitively impaired patients. METHODS: Six adult patients admitted to the Epilepsy Monitoring Unit (EMU) at Mayo Clinic in Rochester, Minnesota were studied. The keyboard was installed on the patient's smartphone. In the EMU, typing statistics were correlated to electroencephalogram (EEG) confirmed seizures. After discharge, participants continued using their keyboards and kept a seizure log. We also analyzed the key press/release times and usage of participants' keyboards for adherence. RESULTS: Keyboard sessions during and after seizures assessed for key press/release differences versus baseline showed no statistically significant difference (p = 0.44). Using one-way ANOVA, cognitive impairment's potential impact on keyboard statistics was explored in patients who had neuropsychological testing (N = 3). Significant differences were found between patients with and without cognitive impairment (p < 0.001). No significant difference was noted between patients with mild intellectual disability and normal cognitive function (p = 0.55).


Assuntos
Disfunção Cognitiva , Eletroencefalografia , Epilepsia , Estudos de Viabilidade , Convulsões , Humanos , Masculino , Projetos Piloto , Feminino , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/epidemiologia , Epilepsia/complicações , Epilepsia/psicologia , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Pessoa de Meia-Idade , Adulto , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/psicologia , Convulsões/complicações , Idoso , Smartphone , Testes Neuropsicológicos
2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38496670

RESUMO

Introduction: Stereoelectroencephalography (sEEG) has become the predominant method for intracranial seizure localization. When imaging, semiology, and scalp EEG are not in full agreement or definitively localizing, implanted sEEG recordings are used to test candidate seizure onset zones (SOZs). Discovered SOZs may then be targeted for resection, laser ablation, or neurostimulation. If a SOZ is eloquent, resection and ablation are both contraindicated, so identifying functional representation is crucial for therapeutic decision making. Objective: We present a novel functional brain mapping technique that utilizes task-based electrophysiological changes in sEEG during behavioral tasks and test this in pediatric and adult patients. Methods: sEEG was recorded in twenty patients with epilepsy, aged 6-39 (12 female, 18 of 20 patients < 21 years old), who underwent implanted monitoring to identify seizure onset. Each performed 1) visually cued simple repetitive movements of the hand, foot, or tongue while electromyography was recorded, and 2) simple picture naming or verb generation speech tasks while audio was recorded. Broadband changes in the power spectrum of the sEEG were compared between behavior and rest. Results: Electrophysiological functional mapping of movement and/or speech areas was completed in all 20 patients. Eloquent representation was identified in both cortex and white matter, and generally corresponded to classically described functional anatomic organization as well as other clinical mapping results. Robust maps of brain activity were identified in healthy brain, regions of developmental or acquired structural abnormality, and SOZs. Conclusion: Task based electrophysiological mapping using broadband changes in the sEEG signal reliably identifies movement and speech representation in pediatric and adult epilepsy patients.

3.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405801

RESUMO

High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.

4.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38370724

RESUMO

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA