Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Bioorg Chem ; 146: 107262, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467092

RESUMO

Modern classes of antimicrobials are crucial because most drugs in development today are basically antibiotic derivatives. Even though a large number of metal-based compounds have been studied as antimicrobial agents, relatively few studies have examined the antimicrobial properties of Pd(II) and Pt(II) compounds. The [3+2] cycloaddition reactions of [M(N3)L]PF6 (M = Pd(II) and Pt(II); L = 4'-(2-pyridyl)-2,2':6',2″-terpyridine) with 4,4,4-trifluoro-2-butynoic acid ethyl ester gave the corresponding triazolate complexes. The reaction products were fully characterized with a variety of analytical and spectroscopic tools including X-ray crystallographic analysis. The crystal structure of [Pd(triazolatoCF3,COOCH2CH3)L]PF6 provided cut-off evidence that the kinetically formed N1-triazolato isomer favoured the isomerization to the thermodynamically stable N2-analogue. The experimental work was complemented with computational work to get an insight into the nature of the predominant triazolate isomer. The lysozyme binding affinity of the triazolate complexes was examined by mass spectrometry. An analysis of the lysozyme Pd(II) adducts suggests a coordinative covalent mode of binding via the loss of the triazolato ligand. The free ligand and its triazolate complexes displayed selective toxicity against Candida albicans and Cryptococcus neoformans, while no cytotoxicity was observed against the normal human embryonic kidney cell line.


Assuntos
Anti-Infecciosos , Muramidase , Humanos , Anti-Infecciosos/farmacologia , Reação de Cicloadição , Isomerismo , Ligantes , Platina/química , Chumbo/química
2.
Chem Biodivers ; 21(5): e202400363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470083

RESUMO

Reactions between sodium tetrachloropalladate and 2- (or 4-) substituted 4-phenyl-3-thiosemicarbazone ligands (HLR), with various electron-donating and electron-withdrawing substituents (R = OCH3, NO2, and Cl), afford square-planar complexes of the general formula [Pd(LR)2]. Ground-state geometry optimization and the vibrational analysis of cis- and trans-isomers of the complexes were carried out to get an insight into the stereochemistry of the complexes. Natural bond orbital analysis was used to analyze how the nature of the substituent affects the natural charge of the metal center, the type of hybridization, and the strength of the M-N and M-S bonds. Using spectrophotometry, the stability of the complexes, and their DNA binding abilities were assessed. The Pd(II) complexes showed moderate cytotoxicity against MCF-7 and Caco-2 cell lines, two of the assessed malignant cell lines, resulting in all known cell death types, including early apoptotic bodies and late apoptotic vacuoles as well as evident necrotic bodies.


Assuntos
Antineoplásicos , Complexos de Coordenação , Paládio , Tiossemicarbazonas , Humanos , Paládio/química , Paládio/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Estrutura Molecular , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Relação Estrutura-Atividade , DNA/química , DNA/metabolismo , DNA/efeitos dos fármacos
3.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446807

RESUMO

Supramolecular gemifloxacin (GF) sensors have been developed. Supramolecular chemistry is primarily concerned with noncovalent intermolecular and intramolecular interactions, which are far weaker than covalent connections, but they can be exploited to develop sensors with remarkable affinity for a target analyte. In order to determine the dose form of the quinolone antibacterial drug gemifloxacin, the current study's goal is to adapt three polyvinylchloride (PVC) membrane sensors into an electrochemical technique. Three new potentiometric membrane sensors with cylindric form and responsive to gemifloxacin (GF) were developed. The sensors' setup is based on the usage of o-nitrophenyl octyl ether (o-NPOE) as a plasticizer in a PVC matrix, ß-cyclodextrin (ß-CD) (sensor 1), γ-cyclodextrin (γ-CD) (sensor 2), and 4-tert-butylcalix[8]arene (calixarene) (sensor 3) as an ionophore, potassium tetrakis (4-chlorophenyl) borate (KTpClPB) as an ion additive for determination of GF. The developed method was verified according to IUPAC guidelines. The sensors under examination have good selectivity for GF, according to their selectivity coefficients. The constructed sensors demonstrated a significant response towards to GF over a concentration range of 2.4 × 10-6, 2.7 × 10-6, and 2.42 × 10-6 mol L-1 for sensors 1, 2, and 3, respectively. The sensors showed near-Nernstian cationic response for GF at 55 mV, 56 mV, and 60 mV per decade for sensors 1, 2, and 3, respectively. Good recovery and relative standard deviations during the day and between days are displayed by the sensors. They demonstrated good stability, quick response times, long lives, rapid recovery, and precision while also exhibiting good selectivity for GF in various matrices. To determine GF in bulk and dose form, the developed sensors have been successfully deployed. The sensors were also employed as end-point indicators for titrating GF with sodium tetraphenyl borate.


Assuntos
Boratos , Plastificantes , Gemifloxacina , Plastificantes/química , Tetrafenilborato/química , Antibacterianos , Potenciometria/métodos
4.
Molecules ; 28(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110559

RESUMO

Hydrogen peroxide acts as a byproduct of oxidative metabolism, and oxidative stress caused by its excess amount, causes different types of cancer. Thus, fast and cost-friendly analytical methods need to be developed for H2O2. Ionic liquid (IL)-coated cobalt (Co)-doped cerium oxide (CeO2)/activated carbon (C) nanocomposite has been used to assess the peroxidase-like activity for the colorimetric detection of H2O2. Both activated C and IL have a synergistic effect on the electrical conductivity of the nanocomposites to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The Co-doped CeO2/activated C nanocomposite has been synthesized by the co-precipitation method and characterized by UV-Vis spectrophotometry, FTIR, SEM, EDX, Raman spectroscopy, and XRD. The prepared nanocomposite was functionalized with IL to avoid agglomeration. H2O2 concentration, incubation time, pH, TMB concentration, and quantity of the capped nanocomposite were tuned. The proposed sensing probe gave a limit of detection of 1.3 × 10-8 M, a limit of quantification of 1.4 × 10-8 M, and an R2 of 0.999. The sensor gave a colorimetric response within 2 min at pH 6 at room temperature. The co-existing species did not show any interference during the sensing probe. The proposed sensor showed high sensitivity and selectivity and was used to detect H2O2 in cancer patients' urine samples.


Assuntos
Líquidos Iônicos , Nanocompostos , Humanos , Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Colorimetria/métodos , Peroxidases , Nanocompostos/química , Corantes
5.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110866

RESUMO

Herein, a novel optical chemosensor, (CM1 = 2, 6-di((E)-benzylidene)-4-methylcyclohexan-1-one), was designed/synthesized and characterized by 1H-NMR and FT-IR spectroscopy. The experimental observations indicated that CM1 is an efficient and selective chemosensor towards Cd2+, even in the presence of other metal ions, such as Mn2+, Cu2+, Co2+, Ce3+, K+, Hg2+,, and Zn2+ in the aqueous medium. The newly synthesized chemosensor, CM1, showed a significant change in the fluorescence emission spectrum upon coordination with Cd2+. The formation of the Cd2+ complex with CM1 was confirmed from the fluorometric response. The 1:2 combination of Cd2+ with CM1 was found optimum for the desired optical properties, which was confirmed through fluorescent titration, Job's plot, and DFT calculation. Moreover, CM1 showed high sensitivity towards Cd2+ with a very low detection limit (19.25 nM). Additionally, the CM1 was recovered and recycled by the addition of EDTA solution that combines with Cd2+ ion and, hence, frees up the chemosensor.

6.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903501

RESUMO

The 4-amino-N-[2 (diethylamino) ethyl] benzamide (procainamide)-tetraphenylborate complex was synthesized by reacting sodium tetraphenyl borate with 4-amino-N-[2 (diethylamino) ethyl] benzamide, chloride salt, and procainamide in deionized water at room temperature through an ion-associate reaction (green chemistry) at room temperature, and characterized by several physicochemical methods. The formation of ion-associate complex between bio-active molecules and/or organic molecules is crucial to comprehending the relationships between bioactive molecules and receptor interactions. The solid complex was characterized by infrared spectra, NMR, elemental analysis, and mass spectrometry, indicating the formation of ion-associate or ion-pair complex. The complex under study was examined for antibacterial activity. The ground state electronic characteristics of the S1 and S2 complex configurations were computed using the density functional theory (DFT) approach, using B3LYP level 6-311 G(d,p) basis sets. R2 = 0.9765 and 0.9556, respectively, indicate a strong correlation between the observed and theoretical 1H-NMR, and the relative error of vibrational frequencies for both configurations was acceptable, as well. HOMO and LUMO frontier molecular orbitals and molecular electrostatics using the optimized were used to obtain a potential map of the chemical. The n → π* UV absorption peak of the UV cutoff edge was detected for both configurations of the complex. Spectroscopic methods were structures used to characterize the structure (FT-IR and 1HNMR). In the ground state, DFT/B3LYP/6-311G(d,p) basis sets were used to determine the electrical and geometric properties of the S1 and S2 configurations of the title complex. Comparing the observed and calculated values for the S1 and S2 forms, the HOMO-LUMO energy gap of compounds was 3182 and 3231 eV, respectively. The small energy gap between HOMO and LUMO indicated that the compound was stable. In addition, the MEP reveals that positive potential sites were around the PR molecule, whereas negative potential sites were surrounding the TPB site of atoms. The UV absorption of both arrangements is comparable to the experimental UV spectrum.

7.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005274

RESUMO

Gemcitabine is a chemotherapeutic agent used to treat various malignancies, including breast and bladder cancer. In the current study, three innovative selective gemcitabine hydrochloride sensors are developed using 4-tert-butylcalix-[8]-arene (sensor 1), ß-cyclodextrin (sensor 2), and γ-cyclodextrin (sensor 3) as ionophores. The three sensors were prepared by incorporating the ionophores with o-nitrophenyl octyl ether as plasticizer and potassium tetrakis(4-chlorophenyl) borate as ionic additive into a polyvinyl chloride polymer matrix. These sensors are considered environmentally friendly systems in the analytical research. The linear responses of gemcitabine hydrochloride were in the concentration range of 6.0 × 10-6 to 1.0 × 10-2 mol L-1 and 9.0 × 10-6 to 1.0 × 10-2 mol L-1 and 8.0 × 10-6 to 1.0 × 10-2 mol L-1 for sensors 1, 2, and 3, respectively. Over the pH range of 6-9, fast-Nernst slopes of 52 ± 0.6, 56 ± 0.3, and 55 ± 0.8 mV/decade were found in the same order with correlation regressions of 0.998, 0.999, and 0.998, respectively. The lower limits of detection for the prepared sensors were 2.5 × 10-6, 2.2 × 10-6, and 2.7 × 10-6 mol L-1. The sensors showed high selectivity and sensitivity for gemcitabine. Validation of the sensors was carried out in accordance with the requirements established by the IUPAC, while being inexpensive and easy to use in drug formulation. A statistical analysis of the methods in comparison with the official method showed that there was no significant difference in accuracy or precision between them. It was shown that the new sensors could selectively and accurately find gemcitabine hydrochloride in bulk powder, pharmaceutical formulations, and quality control tests. The ionophore-based sensor shows several advantages over conventional PVC membrane sensor sensors regrading the lower limit of detection, and higher selectivity towards the target ion.


Assuntos
Antineoplásicos , Gencitabina , Composição de Medicamentos , Ionóforos , Polímeros , Potenciometria/métodos , Cloreto de Polivinila
8.
Molecules ; 28(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836825

RESUMO

The (R)-(6-Methoxyquinolin-4-yl)[(1S,2S,4S,5R)-5-vinylquinuclidin-2-yl]methanol (quinine)-tetraphenylborate complex was synthesized by reacting sodium tetraphenyl borate with quinine in deionized water at room temperature through an ion-pair reaction (green chemistry) at room temperature. The solid complex was characterized by several physicochemical methods. The formation of ion-pair complex between bio-active molecules and/or organic molecules is crucial to comprehending the relationships between bioactive molecules and receptor interactions. The complex under study was examined for antimicrobial activity. All theoretical calculations were carried out in vacuum and water using the B3LYP level 6-311G(d,p) levels of theory. The theoretical computation allowed for the prediction and visualization of ionic interactions, which explained the complex's stability. The results of energy optimization showed that the Q-TPB complex is stable with a negative complexation energy. The obtained geometries showed that the boron (B-) and nitrogen (N+) in piperidine of the two molecules tetraphenylborate and quinine are close to each other, which makes it possible for ions to interact. The modest energy gap between HOMO and LUMO showed that the compound was stable. The computation of the electron transitions of the two models by density functional theory (TD-DFT) in the solvent at the theoretical level B3LYP/6-311G(d,p) allowed for the detection of three UV/visible absorption bands for both models and the discovery of a charge transfer between the host and the guest. The UV absorption, infrared, and H NMR are comparable with the experimental part.

9.
Molecules ; 28(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110554

RESUMO

Amoxicillin is the most widely used antibiotic in human medicine for treating bacterial infections. However, in the present research, Micromeria biflora's flavonoids extract mediated gold nanoparticles (AuNPs) were conjugated with amoxicillin (Au-amoxi) to study their efficacy against the inflammation and pain caused by bacterial infections. The formation of AuNPs and Au-amoxi conjugates were confirmed by UV-visible surface plasmon peaks at 535 nm and 545 nm, respectively. The scanning electron microscopy (SEM), zeta potential (ZP), and X-ray diffraction (XRD) studies reveal that the size of AuNPs and Au-amoxi are found to be 42 nm and 45 nm, respectively. Fourier-transform infrared spectroscopy (FT-IR) absorption bands at 3200 cm-1, 1000 cm-1, 1500 cm-1, and 1650 cm-1 reveal the possible involvement of different moieties for the formation of AuNPs and Au-amoxi. The pH studies show that AuNPs and Au-amoxi conjugates are stable at lower pH. The carrageenan-induced paw edema test, writhing test, and hot plate test were used to conduct in vivo anti-inflammatory and antinociceptive studies, respectively. According to in vivo anti-inflammatory activity, Au-amoxi compounds have higher efficiency (70%) after 3 h at a dose of 10 mg/kg body weight as compared to standard diclofenac (60%) at 20 mg/kg, amoxicillin (30%) at 100 mg/kg, and flavonoids extract (35%) at 100 mg/kg. Similarly, for antinociceptive activities, writhing test results show that Au-amoxi conjugates produced the same number of writhes (15) but at a lower dose (10 mg/kg) compared to standard diclofenac (20 mg/kg). The hot plate test results demonstrate that the Au-amoxi has a better latency time of 25 s at 10 mg/kg dose when compared to standard Tramadol of 22 s at 30 mg/ kg, amoxicillin of 14 s at 100 mg/kg, and extract of 14 s at 100 mg/kg after placing the mice on the hot plate for 30, 60, and 90 min with a significance of (p ≤ 0.001). These findings show that the conjugation of AuNPs with amoxicillin to form Au-amoxi can boost its anti-inflammatory and antinociceptive potential caused by bacterial infections.


Assuntos
Lamiaceae , Nanopartículas Metálicas , Animais , Humanos , Camundongos , Amoxicilina/farmacologia , Ouro/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Diclofenaco , Nanopartículas Metálicas/química , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia
10.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630753

RESUMO

A molecularly imprinting polymer (MIP) was synthesized for Basic Blue 3 dye and applied to wastewater for the adsorption of a target template. The MIPs were synthesized by bulk polymerization using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA). Basic Blue 3 dye (BB-3), 2,2'-azobisisobutyronitrile (AIBN) and methanol were used as a functional monomer, cross linker, template, initiator and porogenic solvent, respectively, while non-imprinting polymers (NIP) were synthesized by the same procedure but without template molecules. The contact time was 25 min for the adsorption of BB-3 dye from 10 mL of spiked solution using 25 mg polymer. The adsorption of dye (BB-3) on the MIP followed the pseudo-second order kinetic (k2 = 0.0079 mg·g-1·min-1), and it was according to the Langmuir isotherm, with maximum adsorption capacities of 78.13, 85.4 and 99.0 mg·g-1 of the MIP at 283 K, 298 K and 313 K, respectively and 7 mg·g-1 for the NIP. The negative values of ΔG° indicate that the removal of dye by the molecularly imprinting polymer and non-imprinting polymer is spontaneous, and the positive values of ΔH° and ΔS° indicate that the process is endothermic and occurred with the increase of randomness. The selectivity of the MIP for BB-3 dye was investigated in the presence of structurally similar as well as different dyes, but the MIP showed higher selectivity than the NIP. The imprinted polymer showed 96% rebinding capacity at 313 K towards the template, and the calculated imprinted factor and Kd value were 10.73 and 2.62, respectively. In this work, the MIP showed a greater potential of selectivity for the template from wastewater relative to the closely similar compounds.


Assuntos
Impressão Molecular , Corantes , Impressão Molecular/métodos , Oxazinas , Polímeros/química , Águas Residuárias
11.
Molecules ; 27(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011397

RESUMO

Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.


Assuntos
Azetidinas/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipossomos/química , Nanopartículas/química , Polímeros/química , Purinas/farmacocinética , Pirazóis/farmacocinética , Sulfonamidas/farmacocinética , Administração Oral , Animais , Azetidinas/administração & dosagem , Azetidinas/química , Disponibilidade Biológica , Masculino , Purinas/administração & dosagem , Purinas/química , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Ratos Wistar , Sulfonamidas/administração & dosagem , Sulfonamidas/química
12.
ACS Omega ; 9(6): 6815-6827, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371783

RESUMO

The existence of antibiotics in the environment has recently raised serious concerns about their possible hazards to human health and the water ecosystem. In the current study, an activated carbon-supported nanocomposite, AC-CoFe2O3, was synthesized by a coprecipitation method, characterized, and then applied to adsorb different drugs from water. The synthesized composites were characterized by using energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller plots, and scanning electron microscopy. The adsorption of both Ciprofloxacin (Cipro) and Amoxicillin (Amoxi) antibiotics on the composite followed the pseudo-second-order kinetic model (R2 = 0.9981 and 0.9974 mg g-1 min-1, respectively). Langmuir isotherm was the best-fit model showing 312.17 and 217.76 mg g-1 adsorption capacities for Ciprofloxacin and Amoxicillin, respectively, at 333 K. The negative Gibbs free energy (ΔG°) specified the spontaneity of the method. The positive change in the enthalpy (ΔH) indicated that the adsorption process was assisted by higher temperatures. The different optimized parameters were pH, contact time, adsorbent weight, concentration, and temperature. The maximum adsorption of Cipro was found to be 98.41% at pH 12, while for Amoxi, it was 89.09% at pH 2 at 333 K. The drugs were then successfully determined from natural water samples at optimized conditions using these nanocomposites.

13.
Open Life Sci ; 19(1): 20220892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867920

RESUMO

Salinity accumulation poses a threat to the production and productivity of economically important crops such as tomatoes (Solanum lycopersicum L.). Currently, salt tolerance breeding programs have been limited by insufficient genetic and physiological knowledge of tolerance-related traits and a lack of an efficient selection domain. For that purpose, we aimed to determine the ability of tomato cultivars to tolerate salt based on seed traits by multiple biochemical pathways. First, we tested three tomato cultivars according to their response to different sodium chloride (NaCl) concentrations (0, 6.3, 9.8, 13.0, and 15.8 dS m-1) and then we analysed their amino acids, organic acids, and phytohormones. Considering the results of germination traits, it is possible to conclude that cultivar H-2274 was more tolerant to salt stress than others. As a result, multivariate discriminant analysis including principal component analysis and two-way hierarchical clustering analyses were constructed and demonstrated that tomato cultivars were separated from each other by the amino acid, organic acid, and phytohormone contents. Considering germination traits of tomato seeds, cv. 'H-2274' was more tolerant to salinity than others depending on high proline (29 pmol µl-1) and citric acid (568 ng µl-1) assays. Biochemical variability offers a valuable tool for investigating salt tolerance mechanisms in tomatoes, and it will be appreciated to find high-tolerant tomato cultivar(s) to saline conditions. Also, the findings of this study have significant potential for practical applications in agriculture, particularly in developing salt-tolerant tomato cultivars to enhance productivity in saline environments and address socio-economic challenges.

14.
RSC Adv ; 14(27): 19539-19549, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38895531

RESUMO

Ascorbic acid plays a pivotal role in the human body. It maintains the robustness, enlargement, and elasticity of the collagen triple helix. However, the abnormal concentration of ascorbic acid causes various diseases, such as scurvy, cardiovascular diseases, gingival bleeding, urinary stones, diarrhea, stomach convulsions, etc. In the present work, an iron-doped hydroxyapatite (HAp@Fe2O3)-based biosensor was developed for the colorimetric detection of ascorbic acid based on a low-cost, biocompatible, and ubiquitous material. Due to the catalytic nature of HAp owing to the acidic and basic moieties within the structure, it was used as a template for HAp@Fe2O3 synthesis. This approach provides an active as well as large surface area for the sensing of ascorbic acid. The synthesized platform was characterized by various techniques, such as UV-Vis, FTIR, SEM, XRD, TGA, EDX, etc. The HAp@Fe2O3 demonstrated inherent peroxidase-like activity in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) oxidized with the assistance of H2O2. It resulted in the color changing to blue-green, and after the addition of ascorbic acid, the color changed to colorless, resulting in the reduction of TMB. To achieve optimal sensing parameters, experimental conditions were optimized. The quantity of HAp@Fe2O3, H2O2, pH, TMB, time, and the concentration of ascorbic acid were fine-tuned. The linear range for the proposed sensor was 0.6-56 µM, along with a limit of detection of 0.16 µM and a limit of quantification of 0.53 µM. The proposed sensor detects ascorbic acid within 75 seconds at room temperature. The proposed platform was also applied to quantitatively check the concentration of ascorbic acid in a physiological solution.

15.
Heliyon ; 10(4): e25836, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375313

RESUMO

Most of the dyes used in various industries are non-biodegradable and carcinogenic in nature. Therefore, elimination of dyes from textile wastes is mandatory to safeguard the life of human, aquatic animals and aquatic plants. In this connection an effective and eco-friendly hydrogel was synthesized from acrylamide, cellulose, clay, and copper salt abbreviated as AMPS(PHE-Ce)/MC-Cu. The fabricated hydrogel was used as sorbent and catalyst for the adsorption and catalytic reduction of basic blue 3. SEM analysis showed granular texture with small holes or cracks which is basic criteria for an adsorbent surface. The results showed that the BET surface area and the Langmuir surface area were, respectively, 27.87 and 40.32 m2/g. The FTIR analysis confirmed the synthesis of hydrogel, as is evident from peaks at 3500, 3439, 2996, 2414, and 1650 cm-1, which indicated the presence of OH or NH, -C-O-C-, CH3, (C[bond, double bond]O), C-N bonds correspondingly. Thermal stability was confirmed by TGA analysis where weight loss in three stages has been observed. The presence of copper was confirmed through EDX (5.02%) indicating the incorporation of cupper nanoparticles in hydrogel surface. The high adsorption capability of 1590 mg/g as recorded for basic blue-3 dye indicates it to be an efficient adsorbent. The swelling behavior characterized by Fickian diffusion up to 7898% clearly indicated significant swelling. Pseudo 2nd-order kinetics and the Langmuir isotherm models were more fit in unfolding kinetics and isothermal data indicating chemisorption with monolayer sorption as evident from the high R2 values (0.999) of each model. Thermodynamics considerations indicated that the adsorption process is endothermic with a positive enthalpy value of 1371.32 Jmol-1. The positive entropy value of 19.70 J/mol.K signifies a higher degree of disorder at the solid-liquid interface. The findings provided a valuable insights into the hydrogel's capacity to adsorb cationic dyes and reduce them catalytically, pointing towards its potential applications in addressing environmental challenges.

16.
Food Chem X ; 21: 101157, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38317670

RESUMO

The objective of the study was to extend shelf life of Vitis vinifera (L.) by the application of green synthesized Magnesium oxide nanoparticles. Aqueous leaf extract of Azadirachta indica A. juss. and various concentrations of 20 mM, 30 mM, and 40 mM solutions of Magnesium nitrate hexa hydrate salt, were used to synthesize nanoparticles of different size. The characterization of nanoparticles was done by SEM, XRD, and UV. The antimicrobial activity of MgO NPs was evaluated for Azospirilum brasilense and Trichoderma viride, representative of microbes responsible for V. vinifera fruits spoilage. Nanoparticles with crystal size of 28.60 nm has more pronounced effect against microbes. The Shelf life of the Vitis vinifera L. was evaluated by application of 28.60 nm MgO NPs through T1 (nanoparticles coated on packaging), T2 (nanoparticles coated directly on fruit) at 4 °C and 25 °C. T1 at 4 °C was effective to extend the shelf life of Vitis vinifera (L) for an average of 20 days.

17.
Sci Rep ; 14(1): 1647, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238415

RESUMO

The present research study aimed to examine three different herb extract's effects on the discoloration rate of fresh-cut pear slices using an image analysis technique. Pear slices were sprayed and dip-coated with Ocimum basilicum, Origanum vulgare, and Camellia sinensis (0.1 g/ml) extract solution. During 15 days storage period with three days intervals, all sprayed/dip-coated pear slices were analyzed for the quality attribute (TA) and color parameters notably a*, b*, hue angle (H*), lightness (L*), and total color change (ΔE). Further, order kinetic models were used to observe the color changes and to predict the shelf-life. The results obtained showed that the applicability of image analysis helped to predict the discoloration rate, and it was better fitted to the first-order (FO) kinetic model (R2 ranging from 0.87 to 0.99). Based on the kinetic model, color features ΔE and L* was used to predict the shelf-life as they had high regression coefficient values. Thus, the findings obtained from the kinetic study demonstrated Camellia sinensis (assamica) extract spray-coated pear slices reported approximately 28.63- and 27.95-days shelf-stability without much discoloration compared with all other types of surface coating.


Assuntos
Pyrus , Cinética , Extratos Vegetais/farmacologia
18.
PLoS One ; 19(1): e0294769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175855

RESUMO

Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV-2) is the causative agent of COVID-19 pandemic, which has resulted in global fatalities since late December 2019. Alkaloids play a significant role in drug design for various antiviral diseases, which makes them viable candidates for treating COVID-19. To identify potential antiviral agents, 102 known alkaloids were subjected to docking studies against the two key targets of SARS-CoV-2, namely the spike glycoprotein and main protease. The spike glycoprotein is vital for mediating viral entry into host cells, and main protease plays a crucial role in viral replication; therefore, they serve as compelling targets for therapeutic intervention in combating the disease. From the selection of alkaloids, the top 6 dual inhibitory compounds, namely liensinine, neferine, isoliensinine, fangchinoline, emetine, and acrimarine F, emerged as lead compounds with favorable docked scores. Interestingly, most of them shared the bisbenzylisoquinoline alkaloid framework and belong to Nelumbo nucifera, commonly known as the lotus plant. Docking analysis was conducted by considering the key active site residues of the selected proteins. The stability of the top three ligands with the receptor proteins was further validated through dynamic simulation analysis. The leads underwent ADMET profiling, bioactivity score analysis, and evaluation of drug-likeness and physicochemical properties. Neferine demonstrated a particularly strong affinity for binding, with a docking score of -7.5025 kcal/mol for main protease and -10.0245 kcal/mol for spike glycoprotein, and therefore a strong interaction with both target proteins. Of the lead alkaloids, emetine and fangchinoline demonstrated the lowest toxicity and high LD50 values. These top alkaloids, may support the body's defense and reduce the symptoms by their numerous biological potentials, even though some properties naturally point to their direct antiviral nature. These findings demonstrate the promising anti-COVID-19 properties of the six selected alkaloids, making them potential candidates for drug design. This study will be beneficial in effective drug discovery and design against COVID-19 with negligible side effects.


Assuntos
Alcaloides , Antivirais , Inibidores de Proteases , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Alcaloides/farmacologia , Antivirais/farmacologia , COVID-19 , Emetina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
19.
ACS Omega ; 9(5): 5548-5562, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343981

RESUMO

Stress is one of the important factors that directly or indirectly affects the plant architecture, biochemical pathways, and growth and development. Melatonin (MEL) is an important stress hormone; however, the exogenous addition of melatonin to culture media stimulates the defense mechanism and releases higher quantities of secondary metabolites. In this study, submerged adventitious root cultures (SARCs) of diabetically important Stevia rebaudiana were exposed to variable concentrations (0.5-5.0 mg/L) of MEL in combination with 0.5 mg/L naphthalene acetic acid (NAA) to investigate the biomass accumulation during growth kinetics with 07 days intervals for a period of 56 days. The effects of exogenous MEL on the biosynthesis of stevioside (Stev.), total phenolics content (TPC), total flavonoids content (TFC), total phenolics production (TPP), total flavonoids production (TFP), total polyphenolics content (TPPC), fresh and dry weight (FW & DW), and antioxidant potential were also studied. Most of the SARCs displayed lag, exponential, stationary, and decline phases with variable biomass accumulation. The maximum fresh (236.54 g/L) and dry biomass (28.64 g/L) was observed in SARCs exposed to 3.0 mg/L MEL and 0.5 mg/L NAA. The same combination of MEL and NAA also enhanced the accumulation of TPC (18.96 mg/g-DW), TFC (6.33 mg/g-DW), TPP (271.51 mg/L), TFP (90.64 mg/L), and TPPC (25.29 mg/g-DW). Similarly, the highest stevioside biosynthesis (91.45 mg/g-DW) and antioxidant potential (86.15%) were observed in SARCs exposed to 3.0 mg/L MEL and NAA. Moreover, a strong correlation was observed between the biomass and the contents of phenolics, flavonoids, antioxidants, and stevioside. These results suggest that MEL is one of multidimensional stress hormones that modulate the biosynthetic pathways to release higher quantities of metabolites of interest for various industrial applications.

20.
Front Bioeng Biotechnol ; 12: 1338920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390362

RESUMO

Hydrogen peroxide (H2O2) is one of the main byproducts of most enzymatic reactions, and its detection is very important in disease conditions. Due to its essential role in healthcare, the food industry, and environmental research, accurate H2O2 determination is a prerequisite. In the present work, Morus nigra sawdust deposited zinc oxide (ZnO) nanoparticles (NPs) were synthesized by the use of Trigonella foenum extract via a hydrothermal process. The synthesized platform was characterized by various techniques, including UV-Vis, FTIR, XRD, SEM, EDX, etc. FTIR confirmed the presence of a Zn‒O characteristic peak, and XRD showed the hexagonal phase of ZnO NPs with a 35 nm particle size. The EDX analysis confirmed the presence of Zn and O. SEM images showed that the as-prepared nanoparticles are distributed uniformly on the surface of sawdust. The proposed platform (acetic acid-capped ZnO NPs deposited sawdust) functions as a mimic enzyme for the detection of H2O2 in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) colorimetrically. To get the best results, many key parameters, such as the amount of sawdust-deposited nanoparticles, TMB concentration, pH, and incubation time were optimized. With a linear range of 0.001-0.360 µM and an R2 value of 0.999, the proposed biosensor's 0.81 nM limit of quantification (LOQ) and 0.24 nM limit of detection (LOD) were predicted, respectively. The best response for the proposed biosensor was observed at pH 7, room temperature, and 5 min of incubation time. The acetic acid-capped sawdust deposited ZnO NPs biosensor was also used to detect H2O2 in blood serum samples of diabetic patients and suggest a suitable candidate for in vitro diagnostics and commercial purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA