Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life (Basel) ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672723

RESUMO

Drought is a crucial environmental stress that tremendously impacts maize production, particularly under abrupt climate changes. Consequently, breeding drought-tolerant and high-yielding maize hybrids has become decisive in sustaining its production and ensuring global food security under the global fast-growing population. The present study aimed to explore drought tolerance and agronomic performance of newly developed maize inbred lines and their hybrids. Ten newly developed maize inbred lines were crossed with two high-yielding testers using a line × tester mating design. The developed twenty hybrids alongside two high-yielding commercial hybrids were evaluated under water-deficit (5411 m3/ha) and well-watered (7990 m3/ha) conditions in dry summer climate conditions. Highly significant variations were detected among the evaluated hybrids for all studied agronomic traits under well-watered and water-deficit conditions. The inbred lines L10 and L6 were particularly notable, demonstrating the most significant negative general combining ability (GCA) effects for earliness, which is crucial for stress avoidance in both environmental settings. Inbred lines L11, L7, L6, and L1 also showed the highest positive and most significant GCA effects for key yield traits, indicating their potential as parents in breeding programs. The crosses L-10×T-1 and L-6×T-2 were outstanding for their heterotic effects on earliness in days to tasseling and silking. Similarly, the crosses L-4×T-2 and L-1×T-1 excelled in plant and ear heights under both irrigation regimes. The hybrids L-1×T-2 and L-7×T-1 demonstrated superior heterosis for chlorophyll content, number of rows per ear, and overall grain yield. Additionally, hybrids L-11×T-1 and L-11×T-2 exhibited remarkable heterotic effects for the number of grains per row, number of rows per ear, 100-kernel weight, and grain yield, highlighting their potential in breeding for productivity. Based on drought tolerance indices and cluster analysis, the cross combinations L-11×T-1, L-11×T-2, L-7×T-1, and L-1×T-2 were classified as the most drought-tolerant crosses. The principal component analysis highlighted traits such as days to tasseling, days to silking, chlorophyll content, plant height, ear height, number of grains per row, number of rows per ear, and 100-kernel weight can be taken as selection criteria for improving grain yield in maize breeding programs under limited water conditions. Based on the summarized results, the identified genetic materials could be considered promising under both conditions and hold potential for future breeding programs.

2.
Plants (Basel) ; 11(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35567188

RESUMO

Developing high-yielding maize hybrids is essential under the fast-growing global population and abrupt global climate change. Planting density is one of the imperative components for enhancing maize productivity. This study assessed newly developed maize hybrids under three planting densities on two sowing dates. The evaluated hybrids were 40 maize genotypes comprised of 36 F1-developed hybrids and 4 commercial high-yielding check hybrids. The developed hybrids were generated from selected maize inbred lines according to their adaptive traits to high planting density, such as prolificacy, erect leaves, short plants, early silking, anthesis-silking interval, and small tassel size. The applied planting densities were high, intermediate, and low, with 95,000, 75,000, and 55,000 plants/ha, respectively, under timely and late sowing. The high planting density displayed the uppermost grain yield compared with the intermediate and low densities at both sowing dates. The developed hybrid G36 exhibited the highest agronomic performance under high planting density at timely and late sowing. Additionally, G38, G16, G37, G23, G5, G31, G18, G7, G2, G20, G29, and G17 displayed high agronomic traits at both sowing dates. Joint regression and AMMI analyses revealed significant genotype, agro-environment, and genotype × agro-environment interaction effects for grain yield. The AMMI biplot displayed that G39 was closest to the ideal stable hybrid, and the hybrids G36, G18, G38, G17, G2, and G37 were considered desirable stable hybrids. Moreover, the GGE biplot indicated that a high planting density at an optimal sowing date could be considered a representative environment for discriminating high-yielding maize hybrids. The designated promising hybrids are recommended for further inclusion in maize breeding due to their stability and high yields.

3.
Plants (Basel) ; 11(7)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406932

RESUMO

Water scarcity is a major environmental stress that adversatively impacts wheat growth, production, and quality. Furthermore, drought is predicted to be more frequent and severe as a result of climate change, particularly in arid regions. Hence, breeding for drought-tolerant and high-yielding wheat genotypes has become more decisive to sustain its production and ensure global food security with continuing population growth. The present study aimed at evaluating different parental bread wheat genotypes (exotic and local) and their hybrids under normal and drought stress conditions. Gene action controlling physiological, agronomic, and quality traits through half-diallel analysis was applied. The results showed that water-deficit stress substantially decreased chlorophyll content, photosynthetic efficiency (FV/Fm), relative water content, grain yield, and yield attributes. On the other hand, proline content, antioxidant enzyme activities (CAT, POD, and SOD), grain protein content, wet gluten content, and dry gluten content were significantly increased compared to well-watered conditions. The 36 evaluated genotypes were classified based on drought tolerance indices into 5 groups varying from highly drought-tolerant (group A) to highly drought-sensitive genotypes (group E). The parental genotypes P3 and P8 were identified as good combiners to increase chlorophyll b, total chlorophyll content, relative water content, grain yield, and yield components under water deficit conditions. Additionally, the cross combinations P2 × P4, P3 × P5, P3 × P8, and P6 × P7 were the most promising combinations to increase yield traits and multiple physiological parameters under water deficit conditions. Furthermore, P1, P2, and P5 were recognized as promising parents to improve grain protein content and wet and dry gluten contents under drought stress. In addition, the crosses P1 × P4, P2 × P3, P2 × P5, P2 × P6, P4 × P7, P5 × P7, P5 × P8, P6 × P8, and P7 × P8 were the best combinations to improve grain protein content under water-stressed and non-stressed conditions. Certain physiological traits displayed highly positive associations with grain yield and its contributing traits under drought stress such as chlorophyll a, chlorophyll b, total chlorophyll content, photosynthetic efficiency (Fv/Fm), proline content, and relative water content, which suggest their importance for indirect selection under water deficit conditions. Otherwise, grain protein content was negatively correlated with grain yield, indicating that selection for higher grain yield could reduce grain protein content under drought stress conditions.

4.
Plants (Basel) ; 10(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673389

RESUMO

The influence of 24-epibrassinolide (EBR24), applied to leaves at a concentration of 5 µM, on plant physio-biochemistry and its reflection on crop water productivity (CWP) and other agronomic traits of six maize hybrids was field-evaluated under semi-arid conditions. Two levels of irrigation water deficiency (IWD) (moderate and severe droughts; 6000 and 3000 m3 water ha-1, respectively) were applied versus a control (well-watering; 9000 m3 water ha-1). IWD reduced the relative water content, membrane stability index, photosynthetic efficiency, stomatal conductance, and rates of transpiration and net photosynthesis. Conversely, antioxidant enzyme activities and osmolyte contents were significantly increased as a result of the increased malondialdehyde content and electrolyte leakage compared to the control. These negative influences of IWD led to a reduction in CWP and grain yield-related traits. However, EBR24 detoxified the IWD stress effects and enhanced all the above-mentioned parameters. The evaluated hybrids varied in drought tolerance; Giza-168 was the best under moderate drought, while Fine-276 was the best under severe drought. Under IWD, certain physiological traits exhibited a highly positive association with yield and yield-contributing traits or CWP. Thus, exogenously using EBR24 for these hybrids could be an effective approach to improve plant and water productivity under reduced available water in semi-arid environments.

5.
Plants (Basel) ; 9(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036311

RESUMO

Field-based trials and genotype evaluation until yielding stage are two important steps in improving the salt tolerance of crop genotypes and identifying what parameters can be strong candidates for the better understanding of salt tolerance mechanisms in different genotypes. In this study, the salt tolerance of 18 bread wheat genotypes was evaluated under natural saline field conditions and at three saline irrigation levels (5.25, 8.35, and 11.12 dS m-1) extracted from wells. Multidimensional evaluation for salt tolerance of these genotypes was done using a set of agronomic and physio-biochemical attributes. Based on yield index under three salinity levels, the genotypes were classified into four groups ranging from salt-tolerant to salt-sensitive genotypes. The salt-tolerant genotypes exhibited values of total chlorophyll, gas exchange (net photosynthetic rate, transpiration rate, and stomatal conductance), water relation (relative water content and membrane stability index), nonenzymatic osmolytes (soluble sugar, free proline, and ascorbic acid), antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase), K+ content, and K+/Na+ ratio that were greater than those of salt-sensitive genotypes. Additionally, the salt-tolerant genotypes consistently exhibited good control of Na+ and Cl- levels and maintained lower contents of malondialdehyde and electrolyte leakage under high salinity level, compared with the salt-sensitive genotypes. Several physio-biochemical parameters showed highly positive associations with grain yield and its components, whereas negative association was observed in other parameters. Accordingly, these physio-biochemical parameters can be used as individual or complementary screening criteria for evaluating salt tolerance and improvement of bread wheat genotypes under natural saline field conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA