Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 34(6): 7427-7441, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378256

RESUMO

8-Oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair (BER) is the primary pathway to remove the pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Recent studies documented 8-oxoG serves as an epigenetic-like mark and OGG1 modulates gene expression in oxidatively stressed cells. For this new role of OGG1, two distinct mechanisms have been proposed: one is coupled to base excision, while the other only requires substrate binding of OGG1--both resulting in conformational adjustment in the adjacent DNA sequences providing access for transcription factors to their cis-elements. The present study aimed to examine if BER activity of OGG1 is required for pro-inflammatory gene expression. To this end, Ogg1/OGG1 knockout/depleted cells were transfected with constructs expressing wild-type (wt) and repair-deficient mutants of OGG1. OGG1's promoter enrichment, oxidative state, and gene expression were examined. Results showed that TNFα exposure increased levels of oxidatively modified cysteine(s) of wt OGG1 without impairing its association with promoter and facilitated gene expression. The excision deficient K249Q mutant was even a more potent activator of gene expression; whereas, mutant OGG1 with impaired substrate recognition/binding was not. These data suggested the interaction of OGG1 with its substrate at regulatory regions followed by conformational adjustment in the adjacent DNA is the primary mode to modulate inflammatory gene expression.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular , Dano ao DNA/fisiologia , Guanina/análogos & derivados , Guanina/metabolismo , Células HEK293 , Humanos , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA