Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Cell ; 171(3): 724-724.e1, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053972

RESUMO

Angiopoietins signal through TIE receptors to control both developmental and homeostatic processes that can go awry in genetic diseases and cancer. This SnapShot illustrates key elements of angiopoietin signaling in normal and disease contexts.


Assuntos
Angiopoietinas/metabolismo , Neovascularização Patológica/patologia , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Linfangiogênese , Neovascularização Patológica/metabolismo
2.
EMBO J ; 42(5): e109032, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715213

RESUMO

Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.


Assuntos
Células Endoteliais , Vasos Linfáticos , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Regulação da Expressão Gênica , Endotélio Vascular , Fatores de Transcrição/metabolismo , Linfangiogênese/genética , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
3.
Nature ; 594(7863): 430-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079124

RESUMO

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
4.
Circ Res ; 134(11): 1465-1482, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655691

RESUMO

BACKGROUND: Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS: We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS: Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS: Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.


Assuntos
Cardiomegalia , Linhagem da Célula , Endocárdio , Células Endoteliais , Camundongos Transgênicos , Fator B de Crescimento do Endotélio Vascular , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Camundongos , Endocárdio/metabolismo , Endocárdio/patologia , Comunicação Parácrina , Proliferação de Células , Comunicação Autócrina , Camundongos Endogâmicos C57BL , Feminino , Masculino , Movimento Celular
5.
Nature ; 577(7792): 689-694, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942068

RESUMO

Immune surveillance against pathogens and tumours in the central nervous system is thought to be limited owing to the lack of lymphatic drainage. However, the characterization of the meningeal lymphatic network has shed light on previously unappreciated ways that an immune response can be elicited to antigens that are expressed in the brain1-3. Despite progress in our understanding of the development and structure of the meningeal lymphatic system, the contribution of this network in evoking a protective antigen-specific immune response in the brain remains unclear. Here, using a mouse model of glioblastoma, we show that the meningeal lymphatic vasculature can be manipulated to mount better immune responses against brain tumours. The immunity that is mediated by CD8 T cells to the glioblastoma antigen is very limited when the tumour is confined to the central nervous system, resulting in uncontrolled tumour growth. However, ectopic expression of vascular endothelial growth factor C (VEGF-C) promotes enhanced priming of CD8 T cells in the draining deep cervical lymph nodes, migration of CD8 T cells into the tumour, rapid clearance of the glioblastoma and a long-lasting antitumour memory response. Furthermore, transfection of an mRNA construct that expresses VEGF-C works synergistically with checkpoint blockade therapy to eradicate existing glioblastoma. These results reveal the capacity of VEGF-C to promote immune surveillance of tumours, and suggest a new therapeutic approach to treat brain tumours.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Vigilância Imunológica/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Apresentação Cruzada , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células HEK293 , Humanos , Memória Imunológica/imunologia , Linfangiogênese , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Meninges/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fator C de Crescimento do Endotélio Vascular/administração & dosagem , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
6.
FASEB J ; 38(20): e70097, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39394863

RESUMO

Secondary lymphedema (LE) following breast cancer-related surgery is a life-long complication, which currently has no cure. LE induces significant regional adipose tissue deposition, requiring liposuction as a treatment. Here, we aimed to elucidate the transcriptional, metabolomic, and lipidomic signature of the adipose tissue developed due to the surgery-induced LE in short- and long-term LE patients and compared the transcriptomic landscape of LE adipose tissue to the obesity-induced adipose tissue. Adipose tissue biopsies were obtained from breast cancer-operated females with LE from the affected and non-affected arms (n = 20 patients). To decipher the molecular properties of the LE adipose tissue, we performed RNA sequencing, metabolomics, and lipidomics combined with bioinformatics analyses. Differential gene expression data from a cohort of lean and obese patients without LE was used for comparisons. Integrative analysis of functional genomics revealed that inflammatory response, cell chemotaxis, and angiogenesis were upregulated biological processes in the LE arm, indicating a sustained inflammation in the edematous adipose tissue; whereas, epidermal differentiation, cell-cell junction organization, water homeostasis, and neurogenesis were downregulated in the LE arm. Surprisingly, only a few genes were found to be the same in the LE-induced and the obesity-induced adipose tissue expansion, indicating a different type of adipose tissue development in these two conditions. In metabolomics analysis, we found reduced levels of a branched-chain amino acid valine in the LE arm and downregulation of the mRNA levels of its transporter SLC6A15. Lipidomics analyses did not show any significant differences between the LE and non-LE arms, suggesting that other factors affect the lipid composition of the adipose tissue more than the LE in these patients. Our results provide a detailed molecular characterization of adipose tissue in secondary LE after breast cancer-related surgery. We also show distinct differences in transcriptomic signatures between LE-induced adipose tissue and obesity-induced adipose tissue, but only minor differences in metabolome and lipidome between the LE and the non-LE arm.


Assuntos
Tecido Adiposo , Neoplasias da Mama , Linfedema , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Tecido Adiposo/metabolismo , Pessoa de Meia-Idade , Linfedema/metabolismo , Linfedema/etiologia , Linfedema/genética , Linfedema/patologia , Obesidade/metabolismo , Transcriptoma , Idoso , Adulto , Metabolômica , Lipidômica , Multiômica
7.
Circ Res ; 133(4): 333-349, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462027

RESUMO

BACKGROUND: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood. METHODS: We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries. RESULTS: By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction. CONCLUSIONS: Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.


Assuntos
Vasos Linfáticos , Proteínas Monoméricas de Ligação ao GTP , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quilomícrons/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Permeabilidade Capilar
8.
EMBO Rep ; 24(5): e56689, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009825

RESUMO

The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish embryos, Stat5 is activated during NRG-1-induced hyperplastic myocardial growth, and chemical inhibition of the Nrg-1/Erbb4 pathway or Dynamin-2 leads to loss of myocardial growth and Stat5 activation. Moreover, CRISPR/Cas9-mediated knockdown of stat5b results in reduced myocardial growth and cardiac function. Finally, the NRG-1/ERBB4/STAT5b signaling pathway is differentially regulated at mRNA and protein levels in the myocardium of patients with pathological cardiac hypertrophy as compared to control human subjects, consistent with a role of the NRG-1/ERBB4/STAT5b pathway in myocardial growth.


Assuntos
Dinamina II , Neuregulina-1 , Camundongos , Humanos , Animais , Dinamina II/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Peixe-Zebra/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Hipertrofia
9.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150518

RESUMO

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insulina , Ratos , Animais , Insulina/farmacologia , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Triglicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo
10.
Cell ; 140(4): 460-76, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178740

RESUMO

The growth of lymphatic vessels (lymphangiogenesis) is actively involved in a number of pathological processes including tissue inflammation and tumor dissemination but is insufficient in patients suffering from lymphedema, a debilitating condition characterized by chronic tissue edema and impaired immunity. The recent explosion of knowledge on the molecular mechanisms governing lymphangiogenesis provides new possibilities to treat these diseases.


Assuntos
Linfangiogênese , Animais , Células Endoteliais/fisiologia , Humanos , Inflamação/fisiopatologia , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/fisiologia , Vasos Linfáticos/fisiopatologia , Neoplasias/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 119(49): e2116220119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459642

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive pediatric soft-tissue cancer with features of skeletal muscle. Because of poor survival of RMS patients and severe long-term side effects of RMS therapies, alternative RMS therapies are urgently needed. Here we show that the prospero-related homeobox 1 (PROX1) transcription factor is highly expressed in RMS tumors regardless of their cell type of origin. We demonstrate that PROX1 is needed for RMS cell clonogenicity, growth and tumor formation. PROX1 gene silencing repressed several myogenic and tumorigenic transcripts and transformed the RD cell transcriptome to resemble that of benign mesenchymal stem cells. Importantly, we found that fibroblast growth factor receptors (FGFR) mediated the growth effects of PROX1 in RMS. Because of receptor cross-compensation, paralog-specific FGFR inhibition did not mimic the effects of PROX1 silencing, whereas a pan-FGFR inhibitor ablated RMS cell proliferation and induced apoptosis. Our findings uncover the critical role of PROX1 in RMS and offer insights into the mechanisms that regulate RMS development and growth. As FGFR inhibitors have already been tested in clinical phase I/II trials in other cancer types, our findings provide an alternative option for RMS treatment.


Assuntos
Genes Homeobox , Rabdomiossarcoma , Humanos , Criança , Fatores de Transcrição , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Regulação da Expressão Gênica , Receptores de Fatores de Crescimento de Fibroblastos , Transcriptoma , Inibidores de Proteínas Quinases
12.
Genes Dev ; 31(16): 1615-1634, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947496

RESUMO

Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.


Assuntos
Linfangiogênese , Animais , Membrana Basal/fisiologia , Carcinogênese , Inflamação/fisiopatologia , Integrinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Vasos Linfáticos/embriologia , Camundongos , Comunicação Parácrina , Fator C de Crescimento do Endotélio Vascular/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 43(8): e323-e338, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317851

RESUMO

BACKGROUND: Vascular growth followed by vessel specification is crucial for the establishment of a hierarchical blood vascular network. We have shown that TIE2 is required for vein development while little is known about its homologue TIE1 (tyrosine kinase with immunoglobulin-like and EGF [epithelial growth factor]-like domains 1) in this process. METHODS: We analyzed functions of TIE1 as well as its synergy with TIE2 in the regulation of vein formation by employing genetic mouse models targeting Tie1, Tek, and Nr2f2, together with in vitro cultured endothelial cells to decipher the underlying mechanism. RESULTS: Cardinal vein growth appeared normal in TIE1-deficient mice, whereas TIE2 deficiency altered the identity of cardinal vein endothelial cells with the aberrant expression of DLL4 (delta-like canonical Notch ligand 4). Interestingly, the growth of cutaneous veins, which was initiated at approximately embryonic day 13.5, was retarded in mice lack of TIE1. TIE1 deficiency disrupted the venous integrity, displaying increased sprouting angiogenesis and vascular bleeding. Abnormal venous sprouts with defective arteriovenous alignment were also observed in the mesenteries of Tie1-deleted mice. Mechanistically, TIE1 deficiency resulted in the decreased expression of venous regulators including TIE2 and COUP-TFII (chicken ovalbumin upstream promoter transcription factor, encoded by Nr2f2, nuclear receptor subfamily 2 group F member 2) while angiogenic regulators were upregulated. The alteration of TIE2 level by TIE1 insufficiency was further confirmed by the siRNA-mediated knockdown of Tie1 in cultured endothelial cells. Interestingly, TIE2 insufficiency also reduced the expression of TIE1. Combining the endothelial deletion of Tie1 with 1 null allele of Tek resulted in a progressive increase of vein-associated angiogenesis leading to the formation of vascular tufts in retinas, whereas the loss of Tie1 alone produced a relatively mild venous defect. Furthermore, the induced deletion of endothelial Nr2f2 decreased both TIE1 and TIE2. CONCLUSIONS: Findings from this study imply that TIE1 and TIE2, together with COUP-TFII, act in a synergistic manner to restrict sprouting angiogenesis during the development of venous system.


Assuntos
Receptor de TIE-1 , Receptor TIE-2 , Camundongos , Animais , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Veias
14.
Nature ; 562(7725): 128-132, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258227

RESUMO

Angiocrine signals derived from endothelial cells are an important component of intercellular communication and have a key role in organ growth, regeneration and disease1-4. These signals have been identified and studied in multiple organs, including the liver, pancreas, lung, heart, bone, bone marrow, central nervous system, retina and some cancers1-4. Here we use the developing liver as a model organ to study angiocrine signals5,6, and show that the growth rate of the liver correlates both spatially and temporally with blood perfusion to this organ. By manipulating blood flow through the liver vasculature, we demonstrate that vessel perfusion activates ß1 integrin and vascular endothelial growth factor receptor 3 (VEGFR3). Notably, both ß1 integrin and VEGFR3 are strictly required for normal production of hepatocyte growth factor, survival of hepatocytes and liver growth. Ex vivo perfusion of adult mouse liver and in vitro mechanical stretching of human hepatic endothelial cells illustrate that mechanotransduction alone is sufficient to turn on angiocrine signals. When the endothelial cells are mechanically stretched, angiocrine signals trigger in vitro proliferation and survival of primary human hepatocytes. Our findings uncover a signalling pathway in vascular endothelial cells that translates blood perfusion and mechanotransduction into organ growth and maintenance.


Assuntos
Comunicação Autócrina , Integrina beta1/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/fisiologia , Mecanotransdução Celular/fisiologia , Transdução de Sinais , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Cell Mol Life Sci ; 80(2): 54, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715759

RESUMO

Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , Aprendizagem Espacial , Fator D de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/fisiologia , Hipocampo/metabolismo , Neurogênese/genética , Camundongos Knockout , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
16.
Circ Res ; 129(1): 136-154, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166072

RESUMO

Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.


Assuntos
Linfangiogênese , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/terapia , Vasos Linfáticos/anormalidades , Mutação , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Anormalidades Linfáticas/metabolismo , Anormalidades Linfáticas/patologia , Vasos Linfáticos/metabolismo , Fenótipo , Transdução de Sinais
17.
Acta Neurochir (Wien) ; 165(11): 3353-3360, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37749289

RESUMO

BACKGROUND: It is estimated that significant (3.2%) of population carries intracranial aneurysm (IA). An increasing number of imaging studies have caused that the chance of finding an incidental aneurysm is becoming more common. Since IA rupture causes subarachnoidal hemorrhage (SAH) and have significant mortality and morbidity prophylactic treatment should be considered when IA is detected. The benefit and risk of treatment of IA is based on epidemiological estimate which takes account patient and aneurysm characteristics. However we know that aneurysm rupture is biological process where inflammation of aneurysm wall is actively leading to degeneration of aneurysm wall and finally weakens it until it bursts. Until now, there have not been imaging method to detect inflammatory process of aneurysm wall METHODS: We created targeting immunoliposome for use in the imaging of aneurysm. Immunoliposome comprises antibodies against at least one vascular inflammatory marker associated with aneurysm inflammation and a label and/or a contrast agent. RESULTS: Histological analysis of IAs where immunoliposome comprises antibodies against vascular inflammation with a label shows promising results for selectively detecting aneurysms inflammation. In magnetic resonance imaging (MRI) we were able to detect immunoliposomes carrying gadolinium. CONCLUSION: Our work opens a new avenue for using contrast labeled immunoliposomes for detecting rupture-prone aneurysms. Immunoliposomes can cary gadolinium and selectively bind to inflammatory section of aneurysm that can be detected with MRI. Further research is needed to develop immunoliposomes to be used with MRI in humans to target treatment to those patients who benefit from it the most.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/epidemiologia , Gadolínio , Inflamação/complicações , Inflamação/patologia , Fatores de Risco , Imageamento por Ressonância Magnética/efeitos adversos , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/epidemiologia , Hemorragia Subaracnóidea/complicações
18.
Circulation ; 143(1): 65-77, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33203221

RESUMO

BACKGROUND: Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction. METHODS: We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene-deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3-CreERT recombinase-mediated genetic cell lineage tracing and viral vector-mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2'-deoxyuridine-mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B-induced vessels in the heart. RESULTS: We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function. CONCLUSIONS: The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.


Assuntos
Vasos Coronários/metabolismo , Endocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Regeneração/fisiologia , Fator B de Crescimento do Endotélio Vascular/biossíntese , Animais , Transdiferenciação Celular/fisiologia , Células Cultivadas , Vasos Coronários/patologia , Endocárdio/patologia , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Transgênicos , Fator B de Crescimento do Endotélio Vascular/deficiência , Fator B de Crescimento do Endotélio Vascular/genética
19.
Gastroenterology ; 160(1): 245-259, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941878

RESUMO

BACKGROUND & AIMS: Mutations in the APC gene and other genes in the Wnt signaling pathway contribute to development of colorectal carcinomas. R-spondins (RSPOs) are secreted proteins that amplify Wnt signaling in intestinal stem cells. Alterations in RSPO genes have been identified in human colorectal tumors. We studied the effects of RSPO1 overexpression in ApcMin/+ mutant mice. METHODS: An adeno associated viral vector encoding RSPO1-Fc fusion protein, or control vector, was injected into ApcMin/+mice. Their intestinal crypts were isolated and cultured as organoids. which were incubated with or without RSPO1-Fc and an inhibitor of transforming growth factor beta receptor (TGFBR). Livers were collected from mice and analyzed by immunohistochemistry. Organoids and adenomas were analyzed by quantitative reverse-transcription PCR, single cell RNA sequencing, and immunohistochemistry. RESULTS: Intestines from Apc+/+ mice injected with the vector encoding RSPO1-Fc had significantly deeper crypts, longer villi, with increased EdU labeling, indicating increased proliferation of epithelial cells, in comparison to mice given control vector. AAV-RSPO1-Fc-transduced ApcMin/+ mice also developed fewer and smaller intestinal tumors and had significantly longer survival times. Adenomas of ApcMin/+ mice injected with the RSPO1-Fc vector showed a rapid increase in apoptosis and in the expression of Wnt target genes, followed by reduced expression of messenger RNAs and proteins regulated by the Wnt pathway, reduced cell proliferation, and less crypt branching than adenomas of mice given the control vector. Addition of RSPO1 reduced the number of adenoma organoids derived from ApcMin/+ mice and suppressed expression of Wnt target genes but increased phosphorylation of SMAD2 and transcription of genes regulated by SMAD. Inhibition of TGFBR signaling in organoids stimulated with RSPO1-Fc restored organoid formation and expression of genes regulated by Wnt. The TGFBR inhibitor restored apoptosis in adenomas from ApcMin/+ mice expressing RSPO1-Fc back to the same level as in the adenomas from mice given the control vector. CONCLUSIONS: Expression of RSPO1 in ApcMin/+ mice increases apoptosis and reduces proliferation and Wnt signaling in adenoma cells, resulting in development of fewer and smaller intestinal tumors and longer mouse survival. Addition of RSPO1 to organoids derived from adenomas inhibits their growth and promotes proliferation of intestinal stem cells that retain the APC protein; these effects are reversed by TGFB inhibitor. Strategies to increase the expression of RSPO1 might be developed for the treatment of intestinal adenomas.


Assuntos
Adenoma/patologia , Neoplasias Intestinais/patologia , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Via de Sinalização Wnt/fisiologia , Adenoma/etiologia , Animais , Modelos Animais de Doenças , Neoplasias Intestinais/etiologia , Camundongos , Organoides
20.
Eur Respir J ; 59(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34446463

RESUMO

BACKGROUND: Successful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear. We investigated the ameliorative effects of vascular endothelial growth factor (VEGF)-C/VEGF receptor 3 (VEGFR-3) signalling in macrophages in lipopolysaccharide (LPS)-induced lung injury. METHODS: LPS was intranasally injected into wild-type and transgenic mice. Gain and loss of VEGF-C/VEGFR-3 signalling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3 (sVEGFR-3) or anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells. RESULTS: The early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage (BAL) fluid interleukin-10 (IL-10), but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3-deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of the extrinsic apoptotic neutrophils and VEGF-C/VEGFR-3 signalling increased efferocytosis via upregulation of integrin αv in the macrophages. We also found that incubation with BAL fluid from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreased VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages. CONCLUSIONS: VEGF-C/VEGFR-3 signalling in macrophages ameliorates experimental lung injury. This mechanism may also provide an explanation for ARDS resolution.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/metabolismo , Animais , Humanos , Interleucina-10/efeitos adversos , Interleucina-10/metabolismo , Lipopolissacarídeos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA