Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 234: 116440, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356527

RESUMO

Oxides of vanadium, titanium and graphitic carbon nitride (g-C3N4) are well known for their catalytic activities. In order to achieve synergic catalytic effects, a novel nanocomposite (NC) i.e. V2O5/TiO2/g-C3N4 has been synthesized by a very simple, ecofriendly and nonhazardous hydrothermal method. The fabricated NC was characterized employing UV-Visible, FTIR, SEM, and XRD techniques. UV-Visible and FTIR analysis indicated the formation of the nanocomposite and XRD analysis confirmed the association of V2O5 and TiO2 with g-C3N4 in nanocomposite. SEM study indicated the hetero-structure of NC having size ranging from 50 to 80 nm and it was found having hexagonal crystallite structure. The synthesized nanocomposite exhibited excellent scavenging of free radicals DPPH● (91%) and ABTS●+ (64%) that are responsible for the oxidation of biomolecules. Therefore, NC can be claimed having biomolecule oxidation protective potential. In addition, photocatalytic ability for the degradation of methylene blue (MB) and methyl orange (MO) was also achieved up to 94% and 89% respectively. The synthesized novel nanocomposite exhibited excellent potential to remove free radicals and dyes from aqueous medium which can be further used for the environmental remediation.


Assuntos
Luz , Nanocompostos , Corantes , Nanocompostos/química , Catálise
2.
Environ Res ; 219: 115091, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529323

RESUMO

Textile and printing industries play a vital role in the economy of any country. But the effluents of these industries, which contain toxic Methylene Blue (MB) dye when mixed with fresh water, make it unfit for human health and aquatic life. For the removal of MB, different adsorbents were used, but they were expensive, non-biodegradable or less effective. In this research, novel carboxymethyl starch grafted poly 2-carboxyethyl acrylate (CM-St-g-P2CEtA) was synthesized by reacting carboxymethyl starch with 2-carboxyethyl acrylate. The reaction followed a free radical polymerization mechanism. The structure and properties of CM-St-g-P2CEtA were investigated by advanced analytical techniques. The CM-St-g-P2CEtA was employed for the remediation of Methylene Blue (MB) dye from wastewater. The removal percentage (%R) of MB was checked under different parameters, like different pH levels, different initial concentrations of dye, different adsorbent doses, and different contact times. The results obtained during the experiment were subjected to different adsorption and kinetic models. In the kinetic investigation, the experimental results were best represented by the pseudo-second-order kinetic model due to its high R2 value of 0.999. Similarly, with a regression coefficient (R2) value of 0.947, the Langmuir adsorption isotherm was best represented by the experimental results. The Langmuir adsorption model showed that MB dye was adsorbed on the surface of CM-St-g-P2CEtA in a monolayer pattern. The pseudo 2nd order kinetic model suggested that the adsorption process favored chemisorption mechanism. The CM-St-g-P2CEtA showed maximum percentage removal efficiency (%R) of 99.3% for MB dye.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Azul de Metileno/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Cinética
3.
Mikrochim Acta ; 190(6): 242, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243779

RESUMO

Binder-free and efficient electrochemical sensing of levofloxacin (LF) was successfully developed based on the nitrogen-doped carbon nanodots (NCNDs). The NCNDs were synthesized by hydrothermal carbonation (180°C for 12 h), and the heteroatom was embedded in aqueous solution of ammonia (NH3). Spectral and microscopic characteristization techniques were used to analyze the topological, crystallinity, and chemical binding behavior of synthesized biomass functional material. HR-TEM image revealed a uniform spherical dot (2.96 nm), and superior quantum yield efficiency (0.42 Φ). The NCNDs was drop coated on a glassy carbon electrode (GCE) and electrochemical sensing of LF was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve in phosphate-buffered saline (PBS; pH = 7.0). The NCNDs modified electrode showed a sharp oxidation peak at +0.95 V (vs. Ag/AgCl) with a four-fold higher current response than the bare GC electrode. The NCNDs/GCE surface not only increases the current response, but has lower detection potential, and facilitates electron transfer reaction. Under optimized working parameters, the NCNDs/GCE showed wide linear concentrations range from 200 nM to 2.8 mM and a low detection limit (LOD) of 48.26 nM (S/N = 3). The electrode modified with NCNDs has high electrochemical sensing stability (RSD = 1.284 ± 0.05% over 5 days), and superior reproducibility (RSD = 1.682 ± 0.06% (n = 3)). Finally, the NCNDs modified GC electrode was successfully applied to quantify the concentration of LF in drug and river water samples with acceptable recovery percentages of 96.60-99.20% and 97.20-99.00% (n=3), respectively.


Assuntos
Carbono , Levofloxacino , Nitrogênio , Reprodutibilidade dos Testes , Biomassa , Preparações Farmacêuticas , Água
4.
Chirality ; 34(10): 1383-1388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735121

RESUMO

WHO is searching most active antibiotics due to the bacterial resistance problem. The activities of the racemic antibiotics may be augment by preparing optically active antibiotics by the chiral separation. Chiral separation of potential antibiotics such as cefotaxime and ofloxacin was studied using amylose-based packing chiral stationary phases (CSPs) such as Chiralpak IA and Chiralpak IG. Supercritical fluid chromatography (SFC) was employed to carry out this study. Both immobilized CSPs such as Chiralpak IA and IG have sown remarkable selectivity for the reported drugs by using SFC. The values of retention factor (k) for ofloxacin enantiomers were 9.63 and 11.81, followed by 2.94 and 5.96 for cefotaxime enantiomers. The values of separation factor (α) for both the reported drugs were 1.22 and 2.03, respectively Similarly, the values of resolution factor (Rs) for both the enantio-selective drugs were 1.49 and 2.06, separately and respectively. The chiral recognition mechanism was developed and it was observed that the π-π interactions are playing a major role. The developed method is effective, reproducible, eco-friendly, and may be used to discriminate the enantiomers of the reported drugs in any sample.


Assuntos
Cromatografia com Fluido Supercrítico , Antibacterianos , Cefotaxima , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Ofloxacino , Estereoisomerismo
5.
Chirality ; 34(6): 848-855, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297109

RESUMO

Chiral separation of ß-blockers is performed by utilizing the supercritical fluid chromatographic method. The chiral columns utilized were Chiralpak IG and Chiralpak IBN-5. The finest mobile phase was CO2 -0.2% TEA in methanol (60:40). The values atenolol enantiomers retention factors were 6.39 and 8.98. These values for propranolol enantiomers were 3.39 and 4.06. These values for betaxolol enantiomers were 4.08 and 4.68. The separation and resolution factor values for atenolol, propranolol, and betaxolol were 1.41 and 3.33, 1.19 and 2.23, and 1.15 and 1.87, separately and respectively. By comparison, it was observed that Chiralpak IG column is better than Chiralpak IBN-5 column. Supercritical fluid chromatography has been found as the best analytical technique due to its high speed, being eco-friendly, and being economic. The various most probable interactions responsible for the chiral resolution are hydrogen bonding, dipole-dipole interactions, steric effect, and π-π interactions. The reported methods are effective, efficient, and reproducible and may be used to separate and identify atenolol, propranolol, and betaxolol in any unknown samples.


Assuntos
Cromatografia com Fluido Supercrítico , Antagonistas Adrenérgicos beta , Atenolol , Betaxolol , Cromatografia com Fluido Supercrítico/métodos , Propranolol , Estereoisomerismo
7.
Chemosphere ; 321: 138000, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724851

RESUMO

In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Termodinâmica , Adsorção , Cinética , Amido
8.
Chemosphere ; 322: 138080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781001

RESUMO

Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Clorofila A , Triticum , Plântula
9.
Chemosphere ; 324: 138197, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841456

RESUMO

The intensification of biochar into fluidized bed membrane bioreactor was investigated to mitigate membrane fouling. Different biochars from algal biomass were produced and used as biomaterials for wastewater treatment. In this study, different macroalgal biochar was synthesized at different pyrolysis temperatures and characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FTIR) techniques to implicate their effect on membrane fouling reduction in fluidized bed membrane bioreactor. The combined effect of macroalgal biochars and biocarriers with gas sparging was evaluated for fouling mitigation. Macroalgal biochar curtailed membrane fouling effectively at low gas sparging rate. Transmembrane pressure (TMP) was reduced to 0.053 bar; under the fluidization of biochar-650 and biocarriers with gas sparging; from 0.27 bar (gas sparging only). Combined effect of gas sparging, biocarriers and biochar-650 instigated 92.1% fouling reduction in comparative to gas sparging alone. Mechanical scouring driven by biocarriers could reduce fouling due to removing surface deposit of foulants from membrane surface effectively and biochar can efficiently adsorb foulants because of its active functional groups resulting in reduction of colloidal fouling. The addition of divalent ions (Ca2+) further enhanced the fouling reduction in fluidized bed membrane bioreactor.


Assuntos
Águas Residuárias , Purificação da Água , Membranas Artificiais , Reatores Biológicos , Purificação da Água/métodos
10.
Chemosphere ; 318: 137924, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682633

RESUMO

Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Plantas , Mudança Climática
11.
Chemosphere ; 321: 137999, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724850

RESUMO

Green and efficient removal of polluted materials are essential for the sustainability of a clean and green environment. Nanomaterials, particularly cellulose nanocrystals (CNCs), are abundant in nature and can be extracted from various sources, including cotton, rice, wheat, and plants. CNCs are renewable biomass materials with a high concentration of polar functional groups. This study used succinic anhydride to modify the surface of native cellulose nanocrystals (NCNCs). Succinic anhydride has been frequently used in adhesives and sealant chemicals for a long time, and here, it is evaluated for dye removal performance. The morphology and modification of CNCs studied using FTIR, TGA & DTG, XRD, SEM, AFM, and TEM. The ability of modified cellulose nanocrystals (MCNCs) to adsorb cationic golden yellow dye and methylene blue dye was investigated. The MCNCs exhibited high adsorption affinity for the two different cationic dyes. The maximum adsorption efficiency of NCNCs and MCNCs towards the cationic dye was 0.009 and 0.156 wt%. The investigation for adhesive properties is based on the strength and toughness of MCNCs. MCNCs demonstrated improved tensile strength (2350 MPa) and modulus (13.9 MPa) using E-51 epoxy system and a curing agent compared to 3 wt% composites. This research lays the groundwork for environmentally friendly fabrication and consumption in the industrial sector.


Assuntos
Corantes , Nanopartículas , Corantes/química , Anidridos Succínicos , Adsorção , Celulose/química , Nanopartículas/química , Cátions
12.
Chemosphere ; 322: 138079, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775030

RESUMO

Oryza sativa is grown worldwide and exhibit sensitivity to different stresses. Exponential increase in microplastics in agroecosystems is damaging and demand pragmatic strategies to protect growth and yield losses. We evaluated exogenous application of different doses of glutathione (GSH) for mediation of physiological traits of rice plants experiencing two different MPs i.e. PET and HDPE in root zone. All the rice seedlings exhibited MP-induced significant (P ≤ 0.001) growth inhibition compared to the control plants. GSH application (T3) significantly increased the shoot fresh weight (8.80%), root fresh weight (19.22%), shoot dry weight (13.705%), root dry weight (25.52%), plant height (5.75%) and 100-grain weight (9.36%), compared to control plants. GSH treated plants (T4) showed a recovery mechanism by managing the marginal rate of reduction of all photosynthetic and gas exchange attributes by showing 34.44, 20.98, 34.83, 42.16, 39.70, and 51.38% reduction for Chl-a, Chl-b, total cholophyll, photosynthetic rate (A), transpiration rate (E), and stomatal conductance (Gs), respectively, compared to control plants. Under 5 mg L-1 HDPE and PET, rice seedlings without GSH treatment responded in terms of increase in total soluble sugar, total free amino acid, glutathione, glutathione disulfide contents, while total soluble protein and ascorbic acid contents decreased significantly, compared with control plants. Corrleation matrix revealed positive relationship between GSH and improvement in studied attributes. Moreover, exogenous GSH improved rice growth and productivity to counter the negative role of MPs. This unique study examined the effects of GSH on rice plants growing in MP-contaminated media and revealed how exogenous GSH helps plants survive MP-stress.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Oryza/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Glutationa/metabolismo , Plântula , Raízes de Plantas/metabolismo
13.
Chemosphere ; 322: 138151, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804633

RESUMO

Dyes contaminated water has caused various environmental and health impacts in developing countries especially Pakistan due to different industrial activities. This issue has been addressed in present study by fabricating biocompatible ionic liquid (IL) membranes for the remediation of Crystal violet (CV) dye from contaminated water. Novel ammonium-based IL such as Triethyl dimethyl ammonium sulfate ([C3A][C2H6]SO4); (A2) was synthesized and further functionalized with hydroxyapatite (HAp; extracted from refused fish scales) resulting in the formation of HA2. Furthermore, A2 and HA2 were then used to fabricate the cellulose acetate (CA) based membranes with different volume ratios. The physicochemical properties of membranes-based composite materials were investigated using FTIR, XRD, and TGA and used for the adsorption of CV in the closed batch study. In results, CA-HA2 (1:2) showed higher efficiency of 98% for CV reduction, after the contact time of 90 min. Kinetic studies showed that the adsorption of CV followed the pseudo-second-order kinetic model for all adsorbents. The antibacterial properties of the synthesized membrane were investigated against gram-positive strain, S. aureus and CA-A2 (1:1) showed better antibacterial properties against S. aureus. The developed membrane is sustainable to be used for the adsorption of CV and against bacteria.


Assuntos
Compostos de Amônio , Líquidos Iônicos , Poluentes Químicos da Água , Líquidos Iônicos/química , Cinética , Staphylococcus aureus , Corantes/química , Violeta Genciana , Água , Antibacterianos/farmacologia , Poluição da Água , Adsorção , Poluentes Químicos da Água/química
14.
Chemosphere ; 307(Pt 3): 136012, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35970211

RESUMO

Incorporation of inorganic and organic materials in polymer has contributed well towards the development of advanced reverse-osmosis membranes; with greater permeation, and salt rejection potential. We are reporting, Zeolite/GO/PVDF based thin-film composite membranes that were successfully synthesized by solution casting process, an eco-friendly, low-cost, and biocompatible technique. PVDF membranes modified with different ratios of GO/Zeo (0.03, 0.05 and 0.07) were characterized by FTIR, SEM, XRD, TGA, and DSC. Membranes were then tested for its potential for water permeation and salt rejection abilities. As prepared membranes owe better pore-distribution, a moderate degree of crystallinity and high absorption capability that is highly needed for micro-filtration phenomena used for desalination of saline water. The modified membranes exhibited enhanced water permeability up to 28.9 L/m2h as compared to pure PVDF membrane having water permeability flux of 15.6 L/m2h. Salt-rejection ability was found increasing for the membranes (up to 98%) modified with different concentration of GO/Zeo, as compare to pure PVDF membrane (82%). During water permeation and salt rejection studies, no deleterious impact was noted for modified PVDF membranes. This development will entail an efficient approach to furnish high-level performance reverse-osmosis membranes, with greater osmotic-pressure bearing capacity and higher stability.


Assuntos
Grafite , Purificação da Água , Zeolitas , Polímeros de Fluorcarboneto , Membranas Artificiais , Osmose , Polivinil , Cloreto de Sódio , Purificação da Água/métodos
15.
Biosensors (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671889

RESUMO

High concentrations of nicotine (40 to 60 mg) are more dangerous for adults who weigh about 70 kg. Herein, we developed an electrochemical transducer using an MXene (Ti3C2Tx)/palladium hydroxide-supported carbon (Pearlman's catalyst) composite (MXene/Pd(OH)2/C) for the identification of nicotine levels in human sweat. Firstly, the MXene was doped with Pd(OH)2/C (PHC) by mechanical grinding followed by an ultrasonication process to obtain the MXene/PHC composite. Secondly, XRD, Raman, FE-SEM, EDS and E-mapping analysis were utilized to confirm the successful formation of MXene/PHC composite. Using MXene/PHC composite dispersion, an MXene/PHC composite-modified glassy carbon electrode (MXene/PHC/GCE) was prepared, which showed high sensitivity as well as selectivity towards nicotine (300 µM NIC) oxidation in 0.1 M phosphate buffer (pH = 7.4) by cyclic voltammetry (CV) and amperometry. The MXene/PHC/GCE had reduced the over potential of nicotine oxidation (about 200 mV) and also enhanced the oxidation peak current (8.9 µA) compared to bare/GCE (2.1 µA) and MXene/GCE (5.5 µA). Moreover, the optimized experimental condition was used for the quantification of NIC from 0.25 µM to 37.5 µM. The limit of detection (LOD) and sensitivity were 27 nM and 0.286 µA µM-1 cm2, respectively. The MXene/PHC/GCE was also tested in the presence of Na+, Mg2+, Ca2+, hydrogen peroxide, acetic acid, ascorbic acid, dopamine and glucose. These molecules were not interfered during NIC analysis, which indicated the good selectivity of the MXene/PHC/GCE sensor. In addition, electrochemical determination of NIC was successfully carried out in the human sweat samples collected from a tobacco smoker. The recovery percentage of NIC in the sweat sample was 97%. Finally, we concluded that the MXene/PHC composite-based sensor can be prepared for the accurate determination of NIC with high sensitivity, selectivity and stability in human sweat samples.


Assuntos
Nicotina , Paládio , Humanos , Suor , Titânio/química , Carbono/química , Eletrodos , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA