Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mult Scler Relat Disord ; 86: 105520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582026

RESUMO

BACKGROUND: Previous studies have shown that thalamic and hippocampal neurodegeneration is associated with clinical decline in Multiple Sclerosis (MS). However, contributions of the specific thalamic nuclei and hippocampal subfields require further examination. OBJECTIVE: Using 7 Tesla (7T) magnetic resonance imaging (MRI), we investigated the cross-sectional associations between functionally grouped thalamic nuclei and hippocampal subfields volumes and T1 relaxation times (T1-RT) and subsequent clinical outcomes in MS. METHODS: High-resolution T1-weighted and T2-weighted images were acquired at 7T (n=31), preprocessed, and segmented using the Thalamus Optimized Multi Atlas Segmentation (THOMAS, for thalamic nuclei) and the Automatic Segmentation of Hippocampal Subfields (ASHS, for hippocampal subfields) packages. We calculated Pearson correlations between hippocampal subfields and thalamic nuclei volumes and T1-RT and subsequent multi-modal rater-determined and patient-reported clinical outcomes (∼2.5 years after imaging acquisition), correcting for confounders and multiple tests. RESULTS: Smaller volume bilaterally in the anterior thalamus region correlated with worse performance in gait function, as measured by the Patient Determined Disease Steps (PDDS). Additionally, larger volume in most functional groups of thalamic nuclei correlated with better visual information processing and cognitive function, as measured by the Symbol Digit Modalities Test (SDMT). In bilateral medial and left posterior thalamic regions, there was an inverse association between volumes and T1-RT, potentially indicating higher tissue degeneration in these regions. We also observed marginal associations between the right hippocampal subfields (both volumes and T1-RT) and subsequent clinical outcomes, though they did not survive correction for multiple testing. CONCLUSION: Ultrahigh field MRI identified markers of structural damage in the thalamic nuclei associated with subsequently worse clinical outcomes in individuals with MS. Longitudinal studies will enable better understanding of the role of microstructural integrity in these brain regions in influencing MS outcomes.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Esclerose Múltipla , Núcleos Talâmicos , Humanos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Masculino , Feminino , Adulto , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Pessoa de Meia-Idade , Estudos Transversais
2.
Neuroimage Clin ; 30: 102655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34215139

RESUMO

Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes organ dysfunction, including cerebral vasculopathy and neurological complications. Hippocampal segmentation with newer and advanced 7 Tesla (7T) MRI protocols has revealed atrophy in specific subregions in other neurodegenerative and neuroinflammatory diseases, however, there is limited evidence of hippocampal involvement in SCD. Thus, we explored whether SCD may be also associated with abnormalities in hippocampal subregions. We conducted 7T MRI imaging in individuals with SCD, including the HbSS, HbSC and HbS/beta thalassemia genotypes (n = 53), and healthy race and age-matched controls (n = 47), using a customized head coil. Both T1- and T2-weighted images were used for automatic segmentation of the hippocampal subfields. Individuals with SCD had, on average, significantly smaller volume of the region including the Dentate Gyrus and Cornu Ammonis (CA) 2 and 3 as compared to the control group. Other hippocampal subregions also showed a trend towards smaller volumes in the SCD group. These findings support and extend previous reports of reduced volume in the temporal lobe in SCD patients. Further studies are necessary to investigate the mechanisms that lead to structural changes in the hippocampus subfields and their relationship with cognitive performance in SCD patients.


Assuntos
Anemia Falciforme , Hipocampo , Anemia Falciforme/diagnóstico por imagem , Região CA2 Hipocampal , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal
3.
PLoS One ; 13(11): e0206127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30481187

RESUMO

Radio-frequency (RF) field inhomogeneities and higher levels of specific absorption rate (SAR) still present great challenges in ultrahigh-field (UHF) MRI. In this study, an in-depth analysis of the eigenmodes of a 20-channel transmit Tic-Tac-Toe (TTT) RF array for 7T neuro MRI is presented. The eigenmodes were calculated for five different Z levels (along the static magnetic field direction) of the coil. Four eigenmodes were obtained for each Z level (composed of 4 excitation ports), and they were named based on the characteristics of their field distributions: quadrature, opposite-phase, anti-quadrature, and zero-phase. Corresponding finite-difference time-domain (FDTD) simulations were performed and experimental B1+ field maps were acquired using a homogeneous spherical phantom and human head (in-vivo). The quadrature mode is the most efficient and it excites the central brain regions; the opposite-phase mode excites the brain peripheral regions; anti-quadrature mode excites the head periphery; and the zero-phase mode excites cerebellum and temporal lobes. Using this RF array, up to five eigenmodes (from five different Z levels) can be simultaneously excited. The superposition of these modes has the potential to produce homogeneous excitation with full brain coverage and low levels of SAR at 7T MRI.


Assuntos
Cerebelo/diagnóstico por imagem , Simulação por Computador , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Cerebelo/efeitos da radiação , Campos Eletromagnéticos , Cabeça/diagnóstico por imagem , Cabeça/efeitos da radiação , Humanos , Campos Magnéticos , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/efeitos da radiação , Imagens de Fantasmas , Ondas de Rádio , Lobo Temporal/efeitos da radiação
4.
Curr Neurovasc Res ; 10(2): 185-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23469953

RESUMO

Excess reactive oxygen species (ROS) generation and oxidative stress in vascular tissue is associated with many diseases. Glutathione (GSH), one of the most abundant low molecular weight non-protein thiols, modulates physiological levels of ROS and is involved in the cell's oxidative stress response. The GSH/GSSG redox couple is commonly used in measuring oxidative stress status. The imbalance of GSH is reported in many disease states including atherosclerosis, cancer, neurodegenerative disease, and aging. The importance of GSH in modulation of intracellular ROS involves both its protective defense against the damaging effects of oxidative stress and its role in facilitating ROS cell signaling. In this paper, we review significant results obtained from mass balance and kinetic reactions based computational and mathematical models of GSH participation in oxidative stress. The focus is on the mediation of ROS and oxidative stress with respect to the antioxidant capacity of the cell. We discuss the role of GSH in the redox state of the cell, maintaining homeostasis through GSH synthesis, scavenging of free radicals, modulating hydrogen peroxide level and interacting with nitric oxide pathways.


Assuntos
Glutationa/metabolismo , Homeostase/fisiologia , Modelos Teóricos , Estresse Oxidativo/fisiologia , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA