Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(15): 8546-8553, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205429

RESUMO

In human populations, women consistently outlive men, which suggests profound biological foundations for sex differences in survival. Quantifying whether such sex differences are also pervasive in wild mammals is a crucial challenge in both evolutionary biology and biogerontology. Here, we compile demographic data from 134 mammal populations, encompassing 101 species, to show that the female's median lifespan is on average 18.6% longer than that of conspecific males, whereas in humans the female advantage is on average 7.8%. On the contrary, we do not find any consistent sex differences in aging rates. In addition, sex differences in median adult lifespan and aging rates are both highly variable across species. Our analyses suggest that the magnitude of sex differences in mammalian mortality patterns is likely shaped by local environmental conditions in interaction with the sex-specific costs of sexual selection.


Assuntos
Envelhecimento/fisiologia , Evolução Biológica , Longevidade , Mamíferos/fisiologia , Animais , Feminino , Masculino , Caracteres Sexuais
2.
J Anim Ecol ; 91(1): 266-278, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743354

RESUMO

Studying natal dispersal in natural populations using capture-recapture data is challenging as an unknown proportion of individuals leaves the study area when dispersing and are never recaptured. Most dispersal (and survival) estimates from capture-recapture studies are thus biased and only reflect what happens within the study area, not the population. Here, we elaborate on recent methodological advances to build a spatially explicit multi-state capture-recapture model to study natal dispersal in a territorial mammal while accounting for imperfect detection and movement in and out of the study area. We validate our model using a simulation study where we compare it to a non-spatial multi-state capture-recapture model. We then apply it to a long-term individual-based dataset on Alpine marmot Marmota marmota. Our model was able to accurately estimate natal dispersal and survival probabilities, as well as mean dispersal distance for a large range of dispersal patterns. By contrast, the non-spatial multi-state estimates underestimated both survival and natal dispersal even for short dispersal distances relative to the study area size. We discuss the application of our approach to other species and monitoring setups. We estimated higher inheritance probabilities of female Alpine marmots, which suggests higher levels of philopatry, although the probability to become dominant after dispersal did not differ between sexes. Nonetheless, the lower survival of young adult males suggests higher costs of dispersal for males. We further discuss the implications of our findings in light of the life history of the species.


Assuntos
Marmota , Animais , Simulação por Computador , Feminino , Masculino
3.
Am Nat ; 195(6): 1037-1055, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32469664

RESUMO

In animal societies, individuals can cooperate in a variety of tasks, including rearing young. Such cooperation is observed in complex social systems, including communal and cooperative breeding. In mammals, both these social systems are characterized by delayed dispersal and alloparenting, whereas only cooperative breeding involves reproductive suppression. While the evolution of communal breeding has been linked to direct fitness benefits of alloparenting, the direct fitness cost of reproductive suppression has led to the hypothesis that the evolution of cooperative breeding is driven by indirect fitness benefits accrued through raising the offspring of related individuals. To decipher between the evolutionary scenarios leading to communal and cooperative breeding in carnivores, we investigated the coevolution among delayed dispersal, reproductive suppression, and alloparenting. We reconstructed ancestral states and transition rates between these traits. We found that cooperative breeding and communal breeding evolved along separate pathways, with delayed dispersal as the first step for both. The three traits coevolved, enhancing and stabilizing one another, which resulted in cooperative social systems as opposed to intermediate configurations being stable. These findings promote the key role of coevolution among traits to stabilize cooperative social systems and highlight the specificities of evolutionary patterns of sociality in carnivores.


Assuntos
Evolução Biológica , Carnívoros/fisiologia , Reprodução/fisiologia , Comportamento Social , Animais , Comportamento Animal , Comportamento Cooperativo , Filogenia
4.
Am Nat ; 192(4): 525-536, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205028

RESUMO

Sociality modulates life-history traits through changes in resource allocation to fitness-related traits. However, how social factors at different stages of the life cycle modulate senescence remains poorly understood. To address this question, we assessed the influence of social environment in both early life and adulthood on actuarial senescence in the Alpine marmot, a cooperative breeder. The influence of helpers on actuarial senescence strongly differed depending on when help was provided and on the sex of the dominant. Being helped when adult slowed down senescence in both sexes. However, the effect of the presence of helpers during the year of birth of a dominant was sex specific. Among dominants helped during adulthood, females born in the presence of helpers senesced slower, whereas males senesced faster. Among dominants without helpers during adulthood, females with helpers at birth senesced faster. Social environment modulates senescence but acts differently between sexes and life stages.


Assuntos
Marmota/fisiologia , Fatores Sexuais , Comportamento Social , Predomínio Social , Envelhecimento , Animais , Comportamento Cooperativo , Feminino , Estágios do Ciclo de Vida , Longevidade , Masculino , Reprodução/fisiologia
5.
Proc Biol Sci ; 283(1845)2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28003452

RESUMO

Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change.


Assuntos
Mudança Climática , Marmota/fisiologia , Preferência de Acasalamento Animal , Animais , Feminino , Tamanho da Ninhada de Vivíparos , Masculino , Gravidez , Estações do Ano , Neve
6.
Glob Chang Biol ; 22(10): 3286-303, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26994312

RESUMO

Morphological changes following changes in species' distribution and phenology have been suggested to be the third universal response to global environmental change. Although structural size and body mass result from different genetic, physiological, and ecological mechanisms, they are used interchangeably in studies evaluating population responses to environmental change. Using a 22-year (1991-2013) dataset including 1768 individuals, we investigated the coupled dynamics of size and mass in a hibernating mammal, the Alpine marmot (Marmota marmota), in response to local environmental conditions. We (i) quantified temporal trends in both traits, (ii) determined the environmental drivers of trait dynamics, and (iii) identified the life-history processes underlying the observed changes. Both phenotypic traits were followed through life: we focused on the initial trait value (juvenile size and mass) and later-life development (annual change in size [Δsize] and mass [Δmass]). First, we demonstrated contrasting dynamics between size and mass over the study period. Juvenile size and subsequent Δsize showed significant declines, whereas juvenile mass and subsequent Δmass remained constant. As a consequence of smaller size associated with a similar mass, individuals were in better condition in recent years. Second, size and mass showed different sensitivities to environmental variables. Both traits benefited from early access to resources in spring, whereas Δmass, particularly in early life, also responded to summer and winter conditions. Third, the interannual variation in both traits was caused by changes in early life development. Our study supports the importance of considering the differences between size and mass responses to the environment when evaluating the mechanisms underlying population dynamics. The current practice of focusing on only one trait in population modeling can lead to misleading conclusions when evaluating species' resilience to contemporary climate change.


Assuntos
Mudança Climática , Hibernação , Marmota , Animais , Meio Ambiente , Dinâmica Populacional , Estações do Ano
7.
J Anim Ecol ; 85(3): 761-73, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26920650

RESUMO

In the context of global change, an increasing challenge is to understand the interaction between weather variables and life histories. Species-specific life histories should condition the way climate influences population dynamics, particularly those that are associated with environmental constraints, such as lifestyles like hibernation and sociality. However, the influence of lifestyle in the response of organisms to climate change remains poorly understood. Based on a 23-year longitudinal study on Alpine marmots, we investigated how their lifestyle, characterized by a long hibernation and a high degree of sociality, interacts with the ongoing climate change to shape temporal variation in age-specific survival. As generally reported in other hibernating species, we expected survival of Alpine marmots to be affected by the continuous lengthening of the growing season of plants more than by changes in winter conditions. We found, however, that Alpine marmots displayed lower juvenile survival over time. Colder winters associated with a thinner snow layer lowered juvenile survival, which in turn was associated with a decrease in the relative number of helpers in groups the following years, and therefore lowered the chances of over-winter survival of juveniles born in the most recent years. Our results provide evidence that constraints on life-history traits associated with hibernation and sociality caused juvenile survival to decrease over time, which might prevent Alpine marmots coping successfully with climate change.


Assuntos
Mudança Climática , Marmota/fisiologia , Neve , Comportamento Social , Animais , Comportamento Animal , França , Hibernação , Estudos Longitudinais , Análise de Sobrevida
8.
Proc Biol Sci ; 282(1813): 20151167, 2015 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-26246552

RESUMO

Evidence that the social environment at critical stages of life-history shapes individual trajectories is accumulating. Previous studies have identified either current or delayed effects of social environments on fitness components, but no study has yet analysed fitness consequences of social environments at different life stages simultaneously. To fill the gap, we use an extensive dataset collected during a 24-year intensive monitoring of a population of Alpine marmots (Marmota marmota), a long-lived social rodent. We test whether the number of helpers in early life and over the dominance tenure length has an impact on litter size at weaning, juvenile survival, longevity and lifetime reproductive success (LRS) of dominant females. Dominant females, who were born into a group containing many helpers and experiencing a high number of accumulated helpers over dominance tenure length showed an increased LRS through an increased longevity. We provide evidence that in a wild vertebrate, both early and adult social environments influence individual fitness, acting additionally and independently. These findings demonstrate that helpers have both short- and long-term effects on dominant female Alpine marmots and that the social environment at the time of birth can play a key role in shaping individual fitness in social vertebrates.


Assuntos
Aptidão Genética , Marmota/fisiologia , Meio Social , Animais , Feminino , França , Tamanho da Ninhada de Vivíparos , Longevidade , Masculino , Marmota/genética , Marmota/crescimento & desenvolvimento , Estações do Ano
9.
Ecology ; 96(11): 2947-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27070014

RESUMO

Sociality should evolve when the fitness benefits of group living outweigh the costs. Theoretical models predict an optimal group size maximizing individual fitness. However, beyond the number of individuals present in a group, the characteristics of these individuals, like their sex, are likely to affect the fitness payoffs of group living. Using 20 years of individually based data on a social mammal, the Alpine marmot (Marmota marmota), we tested for the occurrence of an optimal group size and composition, and for sex-specific effects of group characteristics on fitness. Based on lifetime data of 52 males and 39 females, our findings support the existence of an optimal group size maximizing male fitness and an optimal group composition maximizing fitness of males and females. Additionally, although group characteristics (i.e., size, composition and instability) affecting male and female fitness differed, fitness depended strongly on the number of same-sex subordinates within the social group in the two sexes. By comparing multiple measures of social group characteristics and of fitness in both sexes, we highlighted the sex-specific determinants of fitness in the two sexes and revealed the crucial role of intrasexual competition in shaping social group composition.


Assuntos
Aptidão Genética/fisiologia , Marmota/genética , Marmota/fisiologia , Animais , Feminino , Masculino , Reprodução/fisiologia , Fatores Sexuais , Comportamento Social
10.
Oecologia ; 179(3): 753-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169393

RESUMO

In social species, the hierarchical status of an individual has important consequences for its fitness. While many studies have focused on individual condition to explain access to dominance, very few have investigated the influence of the social environment, especially during early life. Yet it is known that environmental conditions early in life may influence several traits at adulthood. Here, we examine the influence of early social environment on accession to dominance by investigating the influence of litter size and sex composition on survival and the probability of ascending to dominance later in life using a 20-year dataset from a wild population of Alpine marmots (Marmota marmota). Although litter size had no effect on the fate of individuals, litter sex composition affected male juvenile survival and both male and female probabilities of reaching dominant status when adult. Male juveniles incur lower survival when the number of male juveniles in the litter increases, and individuals of both sexes from male-biased litters are more likely to become dominant than individuals from female-biased litters. However, the absolute number of sisters in the litter, rather than the sex ratio, seems to be an important predictor of the probability of acquiring dominant status: pups having more sisters are less likely to become dominant. Several potential mechanisms to explain these results are discussed.


Assuntos
Hierarquia Social , Marmota/fisiologia , Razão de Masculinidade , Animais , Meio Ambiente , Feminino , Humanos , Tamanho da Ninhada de Vivíparos , Masculino , Fatores Sexuais
11.
Ecology ; 94(3): 580-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23687884

RESUMO

The way that plants and animals respond to climate change varies widely among species, but the biological features underlying their actual response remains largely unknown. Here, from a 20-year monitoring study, we document a continuous decrease in litter size of the Alpine marmot (Marmota marmota) since 1990. To cope with harsh winters, Alpine marmots hibernate in burrows and their reproductive output should depend more on spring conditions compared to animals that are active year-round. However, we show that litter size decreased over time because of the general thinning of winter snow cover that has been repeatedly reported to occur in the Alps over the same period, despite a positive effect of an earlier snowmelt in spring. Our results contrast markedly with a recent study on North American yellow-bellied marmots, suggesting that between-species differences in life histories can lead to opposite responses to climate change, even between closely related species. Our case study therefore demonstrates the idiosyncratic nature of the response to climate change and emphasizes, even for related species with similar ecological niches, that it may be hazardous to extrapolate life history responses to climate change from one species to another.


Assuntos
Mudança Climática , Tamanho da Ninhada de Vivíparos/fisiologia , Marmota/fisiologia , Animais , Peso Corporal , Feminino , Gravidez , Estações do Ano , Neve , Fatores de Tempo
12.
J Anim Ecol ; 82(2): 290-300, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23039315

RESUMO

Movement is fundamental to individual and population dynamics, as it allows individuals to meet their basic requirements. Although movement patterns reflect interactions between internal and external factors, only few studies have examined the effects of these factors on movement simultaneously, and they generally focused on particular biological contexts (e.g. dispersal, foraging). However, the relative importance of these factors in driving individual routine movements might reflect a species' potential flexibility to cope with landscape changes and therefore buffer their potential impact on fitness. We used data from GPS collars on Scandinavian brown bears to investigate the relative role of these factors, as well as an additional factor (period of the year) on routine movements at two spatial scales (hourly and daily relocations). As expected, internal factors played a major role in driving movement, compared to external factors at both scales, but its relative importance was greater at a finer scale. In particular, the interaction between reproductive status and period of the year was one of the most influential variables, females being constrained by the movement capacity of their cubs in the first periods of the year. The effect of human disturbance on movement was also greater for females with cubs than for lone females. This study showed how reciprocal modulation of internal and external factors is shaping space use of brown bears. We stress that these factors should be studied simultaneously to avoid the risk of obtaining context-dependent inferences. Moreover, the study of their relative contribution is also highly relevant in the context of multiple-use landscapes, as human activities generally affect the landscape more than they affect the internal states of an individual. Species or individuals with important internal constraints should be less responsive to changes in their environment as they have less freedom from internal constraints and should thus be more sensitive to human alteration of the landscape, as shown for females with cubs in this study.


Assuntos
Atividade Motora/fisiologia , Ursidae/fisiologia , Envelhecimento , Sistemas de Identificação Animal , Animais , Demografia , Ecossistema , Comportamento Alimentar , Feminino , Reprodução
13.
Oecologia ; 172(2): 427-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23224789

RESUMO

Sex-specific senescence has been commonly reported in highly dimorphic and polygynous species. However, whether between-sex differences in senescence occur in monogamous and monomorphic species is poorly known. In this study, we used an extensive dataset of 20 years of mass measurements on free-ranging male and female Alpine marmots (Marmota marmota), a medium-sized, long-lived, social and hibernating mammal, to assess sex-specific patterns of senescence in body mass. We tested for the occurrence of both a decrease in body mass scaled to absolute age (called chronological senescence) and a decrease in body mass scaled to individual age at death (called terminal decline). Whereas males showed evidence of both chronological senescence and terminal decline in body mass, females did not show any detectable senescence in body mass. This unexpected between-sex difference of senescence in a species subject to weak sexual selection might be shaped either by costs of an asymmetric intra-sex competition for mates or by costs of social thermoregulation.


Assuntos
Envelhecimento/fisiologia , Peso Corporal , Marmota/fisiologia , Fatores Etários , Animais , Feminino , Hibernação , Masculino , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Comportamento Social
14.
Mol Ecol ; 18(7): 1491-503, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19298267

RESUMO

The fitness consequences of heterozygosity and the mechanisms underpinning them are still highly controversial. Using capture-mark-recapture models, we investigated the effects of individual heterozygosity, measured at 16 microsatellite markers, on age-dependent survival and access to dominance in a socially monogamous mammalian species, the alpine marmot. We found a positive correlation between standardized multilocus heterozygosity and juvenile survival. However, there was no correlation between standardized multilocus heterozygosity and either survival of older individuals or access to dominance. The disappearance of a significant heterozygosity fitness correlation when individuals older than juveniles are considered is consistent with the prediction that differences in survival among individuals are maximal early in life. The lack of a correlation between heterozygosity and access to dominance may be a consequence of few homozygous individuals attaining the age at which they might reach dominance. Two hypotheses have been proposed to explain heterozygosity-fitness correlations: genome-wide effects reflected by all markers or local effects of specific markers linked to genes that determine fitness. In accordance with genome-wide effects of heterozygosity, we found significant correlations between heterozygosities calculated across single locus or across two sets of eight loci. Thus, the genome-wide heterozygosity effect seems to explain the observed heterozygosity-fitness correlation in the alpine marmot.


Assuntos
Genética Populacional , Heterozigoto , Marmota/genética , Predomínio Social , Fatores Etários , Animais , Feminino , Marcadores Genéticos , Variação Genética , Masculino , Repetições de Microssatélites , Modelos Biológicos
15.
Curr Biol ; 29(10): 1712-1720.e7, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080084

RESUMO

Some species responded successfully to prehistoric changes in climate [1, 2], while others failed to adapt and became extinct [3]. The factors that determine successful climate adaptation remain poorly understood. We constructed a reference genome and studied physiological adaptations in the Alpine marmot (Marmota marmota), a large ground-dwelling squirrel exquisitely adapted to the "ice-age" climate of the Pleistocene steppe [4, 5]. Since the disappearance of this habitat, the rodent persists in large numbers in the high-altitude Alpine meadow [6, 7]. Genome and metabolome showed evidence of adaptation consistent with cold climate, affecting white adipose tissue. Conversely, however, we found that the Alpine marmot has levels of genetic variation that are among the lowest for mammals, such that deleterious mutations are less effectively purged. Our data rule out typical explanations for low diversity, such as high levels of consanguineous mating, or a very recent bottleneck. Instead, ancient demographic reconstruction revealed that genetic diversity was lost during the climate shifts of the Pleistocene and has not recovered, despite the current high population size. We attribute this slow recovery to the marmot's adaptive life history. The case of the Alpine marmot reveals a complicated relationship between climatic changes, genetic diversity, and conservation status. It shows that species of extremely low genetic diversity can be very successful and persist over thousands of years, but also that climate-adapted life history can trap a species in a persistent state of low genetic diversity.


Assuntos
Adaptação Biológica , Clima , Variação Genética , Genoma , Marmota/genética , Animais , Filogenia , Densidade Demográfica
16.
Ecol Evol ; 6(13): 4243-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27386072

RESUMO

Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

17.
Am Nat ; 166(1): 119-23; discussion 124-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15937795

RESUMO

Oli and Dobson proposed that the ratio between the magnitude and the onset of reproduction (F/ alpha ratio) allows one to predict the relative importance of vital rates on population growth rate in mammalian populations and provides a reliable measure of the ranking of mammalian species on the slow-fast continuum of life-history tactics. We show that the choice of the ratio F/ alpha is arbitrary and is not grounded in demographic theory. We estimate the position on the slow-fast continuum using the first axis of a principal components analysis of all life-history variables studied by Oli and Dobson and show that most individual vital rates perform as well as the F/ alpha ratio. Finally, we find, in agreement with previous studies, that the age of first reproduction is a reliable predictor of the ranking of mammalian populations along the slow-fast continuum and that both body mass and phylogeny markedly influence the generation time of mammalian species. We conclude that arbitrary ratios such as F/ alpha correlate with life-history types in mammals simply because life-history variables are highly correlated in response to allometric, phylogenetic, and environmental influences. We suggest that generation time is a reliable metric to measure life-history variation among mammalian populations and should be preferred to any arbitrary combination between vital rates.


Assuntos
Mamíferos/fisiologia , Modelos Biológicos , Reprodução/fisiologia , Envelhecimento , Animais , Peso Corporal , Feminino , Masculino , Mamíferos/anatomia & histologia , Filogenia , Dinâmica Populacional , Fatores de Tempo
18.
Oecologia ; 113(3): 370-376, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28307821

RESUMO

The effects of several environmental factors on the postweaning growth of wild Alpine marmots were investigated. Factors considered were year of birth, sun exposure in the home range, litter size, and sex of young. Components of growth were juvenile mass at emergence from the natal burrow (as a result of preweaning growth) and postweaning growth rate. We also considered the length of the active season during which growth occurs. Mass at emergence and postweaning growth rate varied according to year of birth, were higher in south-facing than in north-facing home ranges, and were higher in small litters. Mass at emergence was higher for males than for females. We suggest that environmental factors affected the juvenile growth pattern through influences on maternal body condition. Our results support Trombulak's hypothesis that mothers maintain as many young as physiologically possible. We suggest that mothers in poor condition sacrificed the mass of their offspring rather than their number. A body mass sexual dimorphism of juveniles occurred at emergence, suggesting that mothers may provide more care for their male than their female offspring.

19.
PLoS One ; 7(1): e29508, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272236

RESUMO

Paternity insurance and dominance tenure length are two important components of male reproductive success, particularly in species where reproduction is highly skewed towards a few individuals. Identifying the factors affecting these two components is crucial to better understand the pattern of variation in reproductive success among males. In social species, the social context (i.e. group size and composition) is likely to influence the ability of males to secure dominance and to monopolize reproduction. Most studies have analyzed the factors affecting paternity insurance and dominance tenure separately. We use a long term data set on Alpine marmots to investigate the effect of the number of subordinate males on both paternity insurance and tenure of dominant males. We show that individuals which are unable to monopolize reproduction in their family groups in the presence of many subordinate males are likely to lose dominance the following year. We also report that dominant males lose body mass in the year they lose both paternity and dominance. Our results suggest that controlling many subordinate males is energetically costly for dominant males, and those unable to support this cost lose the control over both reproduction and dominance. A large number of subordinate males in social groups is therefore costly for dominant males in terms of fitness.


Assuntos
Dominação-Subordinação , Marmota/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Peso Corporal , Cruzamento , Comportamento Competitivo , Feminino , Masculino , Fatores Sexuais , Fatores de Tempo
20.
Biol Lett ; 5(3): 313-6, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19324647

RESUMO

Using the genetic estimates of paternity available for 22 species of socially monogamous mammals, we investigated the impact of the social structure and of the type of pair bonding on the interspecific variations of extra-pair paternity rates. To this purpose, we classified species in three categories of social structure-solitary, pair or family-living species-and in two categories of pair bonding-intermittent or continuous. We show that interspecific variations of extra-pair paternity rates are better explained by the social structure than by the type of pair bonding. Species with intermittent and continuous pair bonding present similar rates of extra-pair paternity, while solitary and family-living species present higher extra-pair paternity rates than pair-living species. This can be explained by both higher male-male competition and higher female mate choice opportunities in solitary and family-living species than in pair-living species.


Assuntos
Mamíferos/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Social , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA