Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473785

RESUMO

Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.


Assuntos
Aprendizado Profundo , Humanos , Fosfotransferases , Descoberta de Drogas/métodos , Polifarmacologia , Aprendizado de Máquina
2.
J Chem Inf Model ; 60(9): 4153-4169, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32539386

RESUMO

Virtual high throughput screening (vHTS) in drug discovery is a powerful approach to identify hits: when applied successfully, it can be much faster and cheaper than experimental high-throughput screening approaches. However, mainstream vHTS tools have significant limitations: ligand-based methods depend on knowledge of existing chemical matter, while structure-based tools such as docking involve significant approximations that limit their accuracy. Recent advances in scientific methods coupled with dramatic speedups in computational processing with GPUs make this an opportune time to consider the role of more rigorous methods that could improve the predictive power of vHTS workflows. In this Perspective, we assert that alchemical binding free energy methods using all-atom molecular dynamics simulations have matured to the point where they can be applied in virtual screening campaigns as a final scoring stage to prioritize the top molecules for experimental testing. Specifically, we propose that alchemical absolute binding free energy (ABFE) calculations offer the most direct and computationally efficient approach within a rigorous statistical thermodynamic framework for computing binding energies of diverse molecules, as is required for virtual screening. ABFE calculations are particularly attractive for drug discovery at this point in time, where the confluence of large-scale genomics data and insights from chemical biology have unveiled a large number of promising disease targets for which no small molecule binders are known, precluding ligand-based approaches, and where traditional docking approaches have foundered to find progressible chemical matter.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Termodinâmica
3.
J Chem Inf Model ; 60(11): 5595-5623, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32936637

RESUMO

Predicting protein-ligand binding affinities and the associated thermodynamics of biomolecular recognition is a primary objective of structure-based drug design. Alchemical free energy simulations offer a highly accurate and computationally efficient route to achieving this goal. While the AMBER molecular dynamics package has successfully been used for alchemical free energy simulations in academic research groups for decades, widespread impact in industrial drug discovery settings has been minimal because of the previous limitations within the AMBER alchemical code, coupled with challenges in system setup and postprocessing workflows. Through a close academia-industry collaboration we have addressed many of the previous limitations with an aim to improve accuracy, efficiency, and robustness of alchemical binding free energy simulations in industrial drug discovery applications. Here, we highlight some of the recent advances in AMBER20 with a focus on alchemical binding free energy (BFE) calculations, which are less computationally intensive than alternative binding free energy methods where full binding/unbinding paths are explored. In addition to scientific and technical advances in AMBER20, we also describe the essential practical aspects associated with running relative alchemical BFE calculations, along with recommendations for best practices, highlighting the importance not only of the alchemical simulation code but also the auxiliary functionalities and expertise required to obtain accurate and reliable results. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative BFE simulations in AMBER20, with a focus on real-world drug discovery applications.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Termodinâmica
4.
Nucleic Acids Res ; 46(D1): D558-D566, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140462

RESUMO

The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content.


Assuntos
Bases de Dados Factuais , Biologia Celular , Biologia Computacional , Curadoria de Dados , Bases de Dados Genéticas , Epigenômica , Humanos , Metadados , Proteômica , Software , Biologia de Sistemas , Interface Usuário-Computador
5.
J Cell Biochem ; 116(3): 351-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25290986

RESUMO

There is an urgent need to identify novel therapies for glioblastoma (GBM) as most therapies are ineffective. A first step in this process is to identify and validate targets for therapeutic intervention. Epigenetic modulators have emerged as attractive drug targets in several cancers including GBM. These epigenetic regulators affect gene expression without changing the DNA sequence. Recent studies suggest that epigenetic regulators interact with drivers of GBM cell and stem-like cell proliferation. These drivers include components of the Notch, Hedgehog, and Wingless (WNT) pathways. We highlight recent studies connecting epigenetic and signaling pathways in GBM. We also review systems and big data approaches for identifying patient specific therapies in GBM. Collectively, these studies will identify drug combinations that may be effective in GBM and other cancers.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Epigênese Genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transdução de Sinais/genética , Metilação de DNA/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
6.
J Chem Theory Comput ; 18(2): 650-663, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34871502

RESUMO

Alchemical binding free energy (BFE) calculations offer an efficient and thermodynamically rigorous approach to in silico binding affinity predictions. As a result of decades of methodological improvements and recent advances in computer technology, alchemical BFE calculations are now widely used in drug discovery research. They help guide the prioritization of candidate drug molecules by predicting their binding affinities for a biomolecular target of interest (and potentially selectivity against undesirable antitargets). Statistical variance associated with such calculations, however, may undermine the reliability of their predictions, introducing uncertainty both in ranking candidate molecules and in benchmarking their predictive accuracy. Here, we present a computational method that substantially improves the statistical precision in BFE calculations for a set of ligands binding to a common receptor by dynamically allocating computational resources to different BFE calculations according to an optimality objective established in a previous work from our group and extended in this work. Our method, termed Network Binding Free Energy (NetBFE), performs adaptive BFE calculations in iterations, re-optimizing the allocations in each iteration based on the statistical variances estimated from previous iterations. Using examples of NetBFE calculations for protein binding of congeneric ligand series, we demonstrate that NetBFE approaches the optimal allocation in a small number (≤5) of iterations and that NetBFE reduces the statistical variance in the BFE estimates by approximately a factor of 2 when compared to a previously published and widely used allocation method at the same total computational cost.

7.
J Chem Theory Comput ; 16(9): 5512-5525, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32672455

RESUMO

Progress in the development of GPU-accelerated free energy simulation software has enabled practical applications on complex biological systems and fueled efforts to develop more accurate and robust predictive methods. In particular, this work re-examines concerted (a.k.a., one-step or unified) alchemical transformations commonly used in the prediction of hydration and relative binding free energies (RBFEs). We first classify several known challenges in these calculations into three categories: endpoint catastrophes, particle collapse, and large gradient-jumps. While endpoint catastrophes have long been addressed using softcore potentials, the remaining two problems occur much more sporadically and can result in either numerical instability (i.e., complete failure of a simulation) or inconsistent estimation (i.e., stochastic convergence to an incorrect result). The particle collapse problem stems from an imbalance in short-range electrostatic and repulsive interactions and can, in principle, be solved by appropriately balancing the respective softcore parameters. However, the large gradient-jump problem itself arises from the sensitivity of the free energy to large values of the softcore parameters, as might be used in trying to solve the particle collapse issue. Often, no satisfactory compromise exists with the existing softcore potential form. As a framework for solving these problems, we developed a new family of smoothstep softcore (SSC) potentials motivated by an analysis of the derivatives along the alchemical path. The smoothstep polynomials generalize the monomial functions that are used in most implementations and provide an additional path-dependent smoothing parameter. The effectiveness of this approach is demonstrated on simple yet pathological cases that illustrate the three problems outlined. With appropriate parameter selection, we find that a second-order SSC(2) potential does at least as well as the conventional approach and provides vast improvement in terms of consistency across all cases. Last, we compare the concerted SSC(2) approach against the gold-standard stepwise (a.k.a., decoupled or multistep) scheme over a large set of RBFE calculations as might be encountered in drug discovery.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34458687

RESUMO

Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing alchemical intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.

9.
Cell Syst ; 5(2): 140-148.e2, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28822752

RESUMO

Linking putatively pathogenic variants to the tissues they affect is necessary for determining the correct diagnostic workup and therapeutic regime in undiagnosed patients. Here, we explored how gene expression across healthy tissues can be used to infer this link. We integrated 6,665 tissue-wide transcriptomes with genetic disorder knowledge bases covering 3,397 diseases. Receiver-operating characteristics (ROC) analysis using expression levels in each tissue and across tissues indicated significant but modest associations between elevated expression and phenotype for most tissues (maximum area under ROC curve = 0.69). At extreme elevation, associations were marked. Upregulation of disease genes in affected tissues was pronounced for genes associated with autosomal dominant over recessive disorders. Pathways enriched for genes expressed and associated with phenotypes highlighted tissue functionality, including lipid metabolism in spleen and DNA repair in adipose tissue. These results suggest features useful for evaluating the likelihood of particular tissue manifestations in genetic disorders. The web address of an interactive platform integrating these data is provided.


Assuntos
Doenças Genéticas Inatas/metabolismo , Doenças Raras/genética , Tecido Adiposo/metabolismo , Reparo do DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Genômica , Humanos , Metabolismo dos Lipídeos/genética , Razão de Chances , Fenótipo , Curva ROC , Doenças Raras/metabolismo , Doenças Raras/patologia , Baço/metabolismo
10.
ACS Omega ; 2(8): 4760-4771, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28884163

RESUMO

Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein-ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein-ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors.

11.
Sci Rep ; 5: 16924, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26596901

RESUMO

Inhibition of cancer-promoting kinases is an established therapeutic strategy for the treatment of many cancers, although resistance to kinase inhibitors is common. One way to overcome resistance is to target orthogonal cancer-promoting pathways. Bromo and Extra-Terminal (BET) domain proteins, which belong to the family of epigenetic readers, have recently emerged as promising therapeutic targets in multiple cancers. The development of multitarget drugs that inhibit kinase and BET proteins therefore may be a promising strategy to overcome tumor resistance and prolong therapeutic efficacy in the clinic. We developed a general computational screening approach to identify novel dual kinase/bromodomain inhibitors from millions of commercially available small molecules. Our method integrated machine learning using big datasets of kinase inhibitors and structure-based drug design. Here we describe the computational methodology, including validation and characterization of our models and their application and integration into a scalable virtual screening pipeline. We screened over 6 million commercially available compounds and selected 24 for testing in BRD4 and EGFR biochemical assays. We identified several novel BRD4 inhibitors, among them a first in class dual EGFR-BRD4 inhibitor. Our studies suggest that this computational screening approach may be broadly applicable for identifying dual kinase/BET inhibitors with potential for treating various cancers.


Assuntos
Antineoplásicos/química , Receptores ErbB/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/química , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Nucleares/química , Fatores de Transcrição/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA